Spaces:
Running
on
T4
Running
on
T4
File size: 9,858 Bytes
f0f40d2 85cce87 f0f40d2 85cce87 f0f40d2 85cce87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import datetime
import os
from pathlib import Path
import sys
from flask import Flask, jsonify, request, send_file, abort
from flask_uploads import UploadSet, configure_uploads, IMAGES
from werkzeug.exceptions import default_exceptions
from werkzeug.exceptions import HTTPException, NotFound
import json
import torch
import time
import threading
import traceback
from PIL import Image
import numpy as np
PACKAGE_PARENT = '..'
WISE_DIR = '../wise/'
SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__))))
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT)))
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, WISE_DIR)))
from parameter_optimization.parametric_styletransfer import single_optimize
from parameter_optimization.parametric_styletransfer import CONFIG as ST_CONFIG
from parameter_optimization.strotss_org import strotss, pil_resize_long_edge_to
from helpers import torch_to_np, np_to_torch
from effects import get_default_settings, MinimalPipelineEffect
class JSONExceptionHandler(object):
def __init__(self, app=None):
if app:
self.init_app(app)
def std_handler(self, error):
response = jsonify(message=error.message)
response.status_code = error.code if isinstance(error, HTTPException) else 500
return response
def init_app(self, app):
self.app = app
self.register(HTTPException)
for code, v in default_exceptions.items():
self.register(code)
def register(self, exception_or_code, handler=None):
self.app.errorhandler(exception_or_code)(handler or self.std_handler)
app = Flask(__name__)
handler = JSONExceptionHandler(app)
image_folder = 'img_received'
photos = UploadSet('photos', IMAGES)
app.config['UPLOADED_PHOTOS_DEST'] = image_folder
configure_uploads(app, photos)
class Args(object):
def __init__(self, initial_data):
for key in initial_data:
setattr(self, key, initial_data[key])
def set_attributes(self, val_dict):
for key in val_dict:
setattr(self, key, val_dict[key])
default_args = {
"output_image" : "output.jpg",
## values always set by request ##
"content_image": "",
"style_image": "",
"output_vp": "",
"iters": 500
}
total_task_count = 0
class NeuralOptimizer():
def __init__(self, args) -> None:
self.cur_iteration = 0
self.args = args
def optimize(self):
base_dir = f"result/{datetime.datetime.now().strftime(r'%Y-%m-%d %H.%Mh %Ss')}"
os.makedirs(base_dir)
content = Image.open(self.args.content_image)
style = Image.open(self.args.style_image)
def set_iter(iter):
self.cur_iteration=iter
effect, preset, _ = get_default_settings("minimal_pipeline")
effect.enable_checkpoints()
reference = strotss(pil_resize_long_edge_to(content, 1024),
pil_resize_long_edge_to(style, 1024), content_weight=16.0,
device=torch.device("cuda"), space="uniform")
ref_save_path = os.path.join(base_dir, "reference.jpg")
resize_to = 720
reference = pil_resize_long_edge_to(reference, resize_to)
reference.save(ref_save_path)
ST_CONFIG["n_iterations"] = self.args.iters
vp, content_img_cuda = single_optimize(effect, preset, "l1", self.args.content_image, str(ref_save_path),
write_video=False, base_dir=base_dir,
iter_callback=set_iter)
output = Image.fromarray(torch_to_np(content_img_cuda.detach().cpu() * 255.0).astype(np.uint8))
output.save(self.args.output_image)
# torch.save (vp.detach().clone(), self.args.output_vp)
# preset_tensor = effect.vpd.preset_tensor(preset, np_to_torch(np.array(content)).cuda(), add_local_dims=True)
np.savez_compressed(self.args.output_vp, vp=vp.detach().cpu().numpy())
class StyleTask:
def __init__(self, task_id, style_filename, content_filename):
self.content_filename=content_filename
self.style_filename=style_filename
self.status = "queued"
self.task_id = task_id
self.error_msg = ""
self.output_filename = content_filename.split(".")[0] + "_output.jpg"
self.vp_output_filename = content_filename.split(".")[0] + "_output.npz"
# global neural_optimizer
# if neural_optimizer is None:
# neural_optimizer = NeuralOptimizer(Args(default_args))
self.neural_optimizer = NeuralOptimizer(Args(default_args))
def start(self):
self.neural_optimizer.args.set_attributes(default_args)
self.neural_optimizer.args.style_image = os.path.join(image_folder, self.style_filename)
self.neural_optimizer.args.content_image = os.path.join(image_folder, self.content_filename)
self.neural_optimizer.args.output_image = os.path.join(image_folder, self.output_filename)
self.neural_optimizer.args.output_vp = os.path.join(image_folder, self.vp_output_filename)
thread = threading.Thread(target=self.run, args=())
thread.daemon = True # Daemonize thread
thread.start() # Start the execution
def run(self):
self.status = "running"
try:
self.neural_optimizer.optimize()
except Exception as e:
print("Error in task %d :"%(self.task_id), str(e))
traceback.print_exc()
self.status = "error"
self.error_msg = str(e)
return
self.status = "finished"
print("finished styling task: " + str(self.task_id))
class StylerQueue:
queued_tasks = []
finished_tasks = []
running_task = None
def __init__(self):
thread = threading.Thread(target=self.status_checker, args=())
thread.daemon = True # Daemonize thread
thread.start() # Start the execution
def queue_task(self, *args):
global total_task_count
total_task_count += 1
task_id = abs(hash(str(time.time())))
print("queued task num. ", total_task_count, "with ID", task_id)
task = StyleTask(task_id, *args)
self.queued_tasks.append(task)
return task_id
def get_task(self, task_id):
if self.running_task is not None and self.running_task.task_id == task_id:
return self.running_task
task = next((task for task in self.queued_tasks + self.finished_tasks if task.task_id == task_id), None)
return task
def status_checker(self):
while True:
time.sleep(0.3)
if self.running_task is None:
if len(self.queued_tasks) > 0:
self.running_task = self.queued_tasks[0]
self.running_task.start()
self.queued_tasks = self.queued_tasks[1:]
elif self.running_task.status == "finished" or self.running_task.status == "error":
self.finished_tasks.append(self.running_task)
if len(self.queued_tasks) > 0:
self.running_task = self.queued_tasks[0]
self.running_task.start()
self.queued_tasks = self.queued_tasks[1:]
else:
self.running_task = None
styler_queue = StylerQueue()
@app.route('/upload', methods=['POST'])
def upload():
if 'style-image' in request.files and \
'content-image' in request.files:
style_filename = photos.save(request.files['style-image'])
content_filename = photos.save(request.files['content-image'])
job_id = styler_queue.queue_task(style_filename, content_filename)
print('added new stylization task', style_filename, content_filename)
return jsonify({"task_id": job_id})
abort(jsonify(message="request needs style, content image"), 400)
@app.route('/get_status')
def get_status():
task_id = int(request.args.get("task_id"))
task = styler_queue.get_task(task_id)
if task is None:
abort(jsonify(message="task with id %d not found"%task_id), 400)
status = {
"status": task.status,
"msg": task.error_msg
}
if task.status == "running":
if isinstance(task, StyleTask):
status["progress"] = float(task.neural_optimizer.cur_iteration) / float(default_args["iters"])
return jsonify(status)
@app.route('/queue_length')
def get_queue_length():
tasks = len(styler_queue.queued_tasks)
if styler_queue.running_task is not None:
tasks += 1
status = {
"length": tasks
}
return jsonify(status)
@app.route('/get_image')
def get_image():
task_id = int(request.args.get("task_id"))
task = styler_queue.get_task(task_id)
if task is None:
abort(jsonify(message="task with id %d not found"%task_id), 400)
if task.status != "finished":
abort(jsonify(message="task with id %d not in finished state"%task_id), 400)
return send_file(os.path.join(image_folder, task.output_filename), mimetype='image/jpg')
@app.route('/get_vp')
def get_vp():
task_id = int(request.args.get("task_id"))
task = styler_queue.get_task(task_id)
if task is None:
abort(jsonify(message="task with id %d not found"%task_id), 400)
if task.status != "finished":
abort(jsonify(message="task with id %d not in finished state"%task_id), 400)
return send_file(os.path.join(image_folder, task.vp_output_filename), mimetype='application/zip')
if __name__ == '__main__':
app.run(debug=False, host="0.0.0.0",port=8600)
|