File size: 7,709 Bytes
976b6b9 99b2813 976b6b9 99b2813 976b6b9 99b2813 976b6b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import re
import unicodedata
import nltk
from nltk import WordNetLemmatizer
from datasets import Dataset
from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification
from transformers import XLMRobertaForSequenceClassification
from transformers import Trainer
import gradio as gr
def preprocess_text(text: str) -> str:
"""
Preprocesses the input text by removing or replacing specific patterns.
Args:
text (str): The input text to be preprocessed.
Returns:
str: The preprocessed text with URLs, mentions, hashtags, emojis,
special characters removed, 'and' replaced, and extra spaces trimmed.
"""
# Define patterns
URL_PATTERN_STR = r"""(?i)((?:https?:(?:/{1,3}|[a-z0-9%])|[a-z0-9.\-]+[.](?:com|net|org|edu|gov|mil|aero|asia|biz|cat|coop|info
|int|jobs|mobi|museum|name|post|pro|tel|travel|xxx|ac|ad|ae|af|ag|ai|al|am|an|ao|aq|ar|as|at|au|aw|ax|az|ba|
bb|bd|be|bf|bg|bh|bi|bj|bm|bn|bo|br|bs|bt|bv|bw|by|bz|ca|cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cs|cu|cv|cx|cy|
cz|dd|de|dj|dk|dm|do|dz|ec|ee|eg|eh|er|es|et|eu|fi|fj|fk|fm|fo|fr|ga|gb|gd|ge|gf|gg|gh|gi|gl|gm|gn|gp|gq|gr|
gs|gt|gu|gw|gy|hk|hm|hn|hr|ht|hu|id|ie|il|im|in|io|iq|ir|is|it|je|jm|jo|jp|ke|kg|kh|ki|km|kn|kp|kr|kw|ky|kz|
la|lb|lc|li|lk|lr|ls|lt|lu|lv|ly|ma|mc|md|me|mg|mh|mk|ml|mm|mn|mo|mp|mq|mr|ms|mt|mu|mv|mw|mx|my|mz|na|nc|ne|
nf|ng|ni|nl|no|np|nr|nu|nz|om|pa|pe|pf|pg|ph|pk|pl|pm|pn|pr|ps|pt|pw|py|qa|re|ro|rs|ru|rw|sa|sb|sc|sd|se|sg|
sh|si|sj|Ja|sk|sl|sm|sn|so|sr|ss|st|su|sv|sx|sy|sz|tc|td|tf|tg|th|tj|tk|tl|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|
uk|us|uy|uz|va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|za|zm|zw)/)(?:[^\s()<>{}\[\]]+|\([^\s()]*?\([^\s()]+\)[^\s()]
*?\)|\([^\s]+?\))+(?:\([^\s()]*?\([^\s()]+\)[^\s()]*?\)|\([^\s]+?\)|[^\s`!()\[\]{};:'\".,<>?«»ββββ])|(?:(?<!@)
[a-z0-9]+(?:[.\-][a-z0-9]+)*[.](?:com|net|org|edu|gov|mil|aero|asia|biz|cat|coop|info|int|jobs|mobi|museum|name
|post|pro|tel|travel|xxx|ac|ad|ae|af|ag|ai|al|am|an|ao|aq|ar|as|at|au|aw|ax|az|ba|bb|bd|be|bf|bg|bh|bi|bj|bm|bn
|bo|br|bs|bt|bv|bw|by|bz|ca|cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cs|cu|cv|cx|cy|cz|dd|de|dj|dk|dm|do|dz|ec|ee|eg
|eh|er|es|et|eu|fi|fj|fk|fm|fo|fr|ga|gb|gd|ge|gf|gg|gh|gi|gl|gm|gn|gp|gq|gr|gs|gt|gu|gw|gy|hk|hm|hn|hr|ht|hu|id
|ie|il|im|in|io|iq|ir|is|it|je|jm|jo|jp|ke|kg|kh|ki|km|kn|kp|kr|kw|ky|kz|la|lb|lc|li|lk|lr|ls|lt|lu|lv|ly|ma|mc|
md|me|mg|mh|mk|ml|mm|mn|mo|mp|mq|mr|ms|mt|mu|mv|mw|mx|my|mz|na|nc|ne|nf|ng|ni|nl|no|np|nr|nu|nz|om|pa|pe|pf|pg|
ph|pk|pl|pm|pn|pr|ps|pt|pw|py|qa|re|ro|rs|ru|rw|sa|sb|sc|sd|se|sg|sh|si|sj|Ja|sk|sl|sm|sn|so|sr|ss|st|su|sv|sx|
sy|sz|tc|td|tf|tg|th|tj|tk|tl|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|uk|us|uy|uz|va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|
za|zm|zw)\b/?(?!@)))"""
URL_PATTERN = re.compile(URL_PATTERN_STR, re.IGNORECASE)
HASHTAG_PATTERN = re.compile(r'#\w*')
MENTION_PATTERN = re.compile(r'@\w*')
PUNCT_REPEAT_PATTERN = re.compile(r'([!?.]){2,}')
ELONG_PATTERN = re.compile(r'\b(\S*?)(.)\2{2,}\b')
WORD_PATTERN = re.compile(r'[^\w<>\s]')
# Convert URL to <URL> so that GloVe will have a vector for it
text = re.sub(URL_PATTERN, ' <URL>', text)
# Add spaces around slashes
text = re.sub(r"/", " / ", text)
# Replace mentions with <USER>
text = re.sub(MENTION_PATTERN, ' <USER> ', text)
# Replace numbers with <NUMBER>
text = re.sub(r"[-+]?[.\d]*[\d]+[:,.\d]*", " <NUMBER> ", text)
# Replace hashtags with <HASHTAG>
text = re.sub(HASHTAG_PATTERN, ' <HASHTAG> ', text)
#text = self.AND_PATTERN.sub('and', text) # & already in the Vocab of GloVe-twitter
# Replace multiple punctuation marks with <REPEAT>
text = re.sub(PUNCT_REPEAT_PATTERN, lambda match: f" {match.group(1)} <REPEAT> ", text)
# Replace elongated words with <ELONG>
text = re.sub(ELONG_PATTERN, lambda match: f" {match.group(1)}{match.group(2)} <ELONG> ", text)
#text = emoji.replace_emoji(text, replace='') # some emojis are in the vocab so we do not remove them, the others will be OOVs
text = text.strip()
# Get only words
text = re.sub(WORD_PATTERN, ' ', text)
text = text.strip()
# Convert stylized Unicode characters to plain text (removes bold text, etc.)
text = ''.join(c for c in unicodedata.normalize('NFKD', text) if not unicodedata.combining(c))
return text
def lemmatize_text(text: str) -> str:
"""
Lemmatizes the input text using the WordNet lemmatizer.
This method attempts to lemmatize each word in the input text. If the WordNet
data is not available, it will download the necessary data and retry.
Args:
text (str): The input text to be lemmatized.
Returns:
str: The lemmatized text.
"""
lemmatizer = WordNetLemmatizer()
downloaded = False
while not downloaded:
try:
lemmatizer.lemmatize(text)
downloaded = True
except LookupError:
print("Downloading WordNet...")
nltk.download('wordnet')
return ' '.join([lemmatizer.lemmatize(word) for word in text.split()])
def predict(phrase: str, finetuned_model: str):
phrase = preprocess_text(phrase)
phrase = lemmatize_text(phrase)
phrase = phrase.lower()
# Get the tokenizer and model
if 'xlm' in finetuned_model.lower():
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
model = XLMRobertaForSequenceClassification.from_pretrained(finetuned_model)
else:
tokenizer = AutoTokenizer.from_pretrained('cardiffnlp/twitter-roberta-base-hate')
model = AutoModelForSequenceClassification.from_pretrained(finetuned_model)
# Get the trainer
trainer = Trainer(
model=model,
processing_class=tokenizer,
)
# Tokenize the phrase
tokens = tokenizer(
phrase,
return_tensors="pt"
)
# Create the dataset
phrase_dataset = Dataset.from_dict({
"input_ids": tokens["input_ids"],
"attention_mask": tokens["attention_mask"],
})
# Get the predictions
pred = trainer.predict(phrase_dataset)
# Check if it is sexist or not
sexist = "Sexist" if pred.predictions.argmax() == 1 else "Not sexist"
return sexist
demo = gr.Interface(
fn=predict,
inputs=[
gr.Textbox(
label="Phrase",
placeholder="Enter a phrase to check if it is sexist or not.",
info="Enter a phrase to check if it is sexist or not.",
),
gr.Dropdown([
"MatteoFasulo/twitter-roberta-base-hate_69",
"MatteoFasulo/twitter-roberta-base-hate_1337",
"MatteoFasulo/twitter-roberta-base-hate_42",
"MatteoFasulo/xlm-roberta-base_69",
"MatteoFasulo/xlm-roberta-base_1337",
"MatteoFasulo/xlm-roberta-base_42",
],
label="Model",
info="Choose the model to use for prediction. XLM-RoBERTa models are suitable for multilingual text.",
)
],
outputs=gr.Text(
label="Prediction",
info="The prediction of the model on the input phrase.",
),
title="Sexism Detection",
description="A small demo to check if a phrase is sexist or not using a fine-tuned RoBERTa model on hate speech detection.",
theme="huggingface",
)
demo.launch() |