Spaces:
Runtime error
Runtime error
File size: 12,482 Bytes
9292fbb 50644e5 9292fbb 50644e5 9292fbb 50644e5 9292fbb 3b5d875 9292fbb 3b5d875 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
from bokeh.events import Tap
from bokeh.io import curdoc
from bokeh.layouts import column
from bokeh.models import Div, TextInput, RadioButtonGroup, TextAreaInput, Span, Button, Panel, Tabs
from bokeh.models.tools import CrosshairTool
from demo_utils import (
get_data,
prompt_boolq,
pvp_colors,
ctl_colors,
clf_colors,
reduct,
task_best_pattern,
plot_polygons_bokeh,
advantage_text,
data_difference,
calculate_overlap,
circ_easing,
average_advantage_text,
plot_three_polygons_bokeh,
tasks,
metric_tap,
neutral_tasks, pattern_graph,
)
from text import text1, text2, text3, text4, initial_passage, initial_question, text5
########################################################################################################################
# Basic dimensions
########################################################################################################################
plot_width = 1200
plot_height = 400
sidebar_width = 400
in_text_plot_height = 300
text_width = 800
widget_size = 400
########################################################################################################################
# Patternification widget
########################################################################################################################
passage = TextAreaInput(title="篇章", rows=3, value=initial_passage, max_width=text_width)
passage.align = "center"
question = TextInput(title="问题", value=initial_question, max_width=text_width)
question.align = "center"
radio_button_group = RadioButtonGroup(labels=["模板 1", "模板 2", "模板 3"], active=0, max_width=text_width)
radio_button_group.align = "center"
box_style = {
"display": "block",
"margin": "0 auto",
"width": f"{text_width}px",
"text-align": "center",
"white-space": "pre-wrap",
"background": "#f4f4f4",
"border": "1px solid #ddd",
# "border-left": "3px solid #4d4945",
"color": "#666",
"page-break-inside": "avoid",
# "font-family": "monospace",
"font-size": "15px",
"line-height": "1.6",
"max-width": "100%",
"overflow": "hidden",
"min-height": "30px",
"word-wrap": "break-word",
}
prompt_box = Div(
text=prompt_boolq(passage.value, question.value, radio_button_group.active),
width=text_width,
style=box_style,
sizing_mode="scale_width",
)
prompt_box.align = "center"
def update_prompt(attrname, old, new):
prompt_box.text = prompt_boolq(passage.value, question.value, radio_button_group.active)
passage.on_change("value", update_prompt)
question.on_change("value", update_prompt)
radio_button_group.on_change("active", update_prompt)
patternification = column(passage, question, radio_button_group, prompt_box, sizing_mode="scale_width")
patternification.align = "center"
########################################################################################################################
# Advantage diagram
########################################################################################################################
advantage_plots_per_task = []
overlapping_range_per_task = []
training_points_per_task = []
clf_results_per_task = []
pvp_results_per_task = []
advantage_tabs = []
advantage_all_figures = Tabs(tabs=advantage_tabs)
advantage_box = Div(
text="Click within the comparison region to compute the data advantage for a performance level",
width=text_width,
style=box_style,
sizing_mode="scale_width",
)
advantage_box.align = "center"
for task in tasks:
training_points, classifier_performances, pattern_performances = get_data(task)
training_points_per_task.append(list(training_points))
clf_results_per_task.append(reduct(classifier_performances, "accmax"))
pvp_results_per_task.append(reduct(pattern_performances, "accmax", task_best_pattern[task], "normal"))
advantage_plots_per_task.append(plot_polygons_bokeh(
task, training_points_per_task[-1], clf_results_per_task[-1], pvp_results_per_task[-1], clf_colors,
pvp_colors
))
advantage_plots_per_task[-1].align = "center"
advantage_plots_per_task[-1].add_tools(CrosshairTool(dimensions="width", line_alpha=0.2))
overlapping_range_per_task.append(calculate_overlap(clf_results_per_task[-1], pvp_results_per_task[-1]))
advantage_tabs.append(Panel(child=advantage_plots_per_task[-1], title=task))
advantage_plots_per_task[-1].on_event(
Tap,
lambda event: metric_tap(
event,
overlapping_range_per_task[advantage_all_figures.active],
training_points_per_task[advantage_all_figures.active],
clf_results_per_task[advantage_all_figures.active],
pvp_results_per_task[advantage_all_figures.active],
advantage_box,
advantage_plots_per_task[advantage_all_figures.active],
),
)
if task == "MNLI":
training_points_per_task.append(list(training_points))
clf_results_per_task.append(reduct(classifier_performances, "accmax"))
pvp_results_per_task.append(reduct(pattern_performances, "accmax", task_best_pattern[task], "normal"))
advantage_plots_per_task.append(plot_polygons_bokeh(
task, training_points_per_task[-1], clf_results_per_task[-1], pvp_results_per_task[-1], clf_colors,
pvp_colors, x_log_scale=True
))
advantage_plots_per_task[-1].align = "center"
advantage_plots_per_task[-1].add_tools(CrosshairTool(dimensions="width", line_alpha=0.2))
overlapping_range_per_task.append(calculate_overlap(clf_results_per_task[-1], pvp_results_per_task[-1]))
advantage_tabs.append(Panel(child=advantage_plots_per_task[-1], title="MNLI (log scale)"))
advantage_plots_per_task[-1].on_event(
Tap,
lambda event: metric_tap(
event,
overlapping_range_per_task[advantage_all_figures.active],
training_points_per_task[advantage_all_figures.active],
clf_results_per_task[advantage_all_figures.active],
pvp_results_per_task[advantage_all_figures.active],
advantage_box,
advantage_plots_per_task[advantage_all_figures.active],
),
)
advantage_all_figures = Tabs(tabs=advantage_tabs)
advantage_all_figures.align = "center"
def on_integrate_click():
frames = 200
initial_placement = overlapping_range_per_task[advantage_all_figures.active][0]
if not isinstance(advantage_plots_per_task[advantage_all_figures.active].renderers[-1], Span):
metric_line = Span(
location=initial_placement,
line_alpha=0.7,
dimension="width",
line_color=clf_colors[0] if initial_placement < 0 else pvp_colors[0],
line_dash="dashed",
line_width=1,
)
advantage_plots_per_task[advantage_all_figures.active].renderers.extend([metric_line])
else:
advantage_plots_per_task[advantage_all_figures.active].renderers[-1].location = initial_placement
advantage_plots_per_task[advantage_all_figures.active].renderers[-1].line_color = clf_colors[
0] if initial_placement < 0 else pvp_colors[0]
average_advantage = 0
for i in range(1, frames):
metric_value = overlapping_range_per_task[advantage_all_figures.active][0] + (
overlapping_range_per_task[advantage_all_figures.active][1] -
overlapping_range_per_task[advantage_all_figures.active][0]) * (i / frames)
advantage_value = data_difference(metric_value, overlapping_range_per_task[advantage_all_figures.active],
training_points_per_task[advantage_all_figures.active],
clf_results_per_task[advantage_all_figures.active],
pvp_results_per_task[advantage_all_figures.active])
average_advantage = ((i - 1) * average_advantage + advantage_value) / i
advantage_plots_per_task[advantage_all_figures.active].renderers[-1].location = metric_value
advantage_plots_per_task[advantage_all_figures.active].renderers[-1].line_color = clf_colors[
0] if advantage_value < 0 else pvp_colors[0]
advantage_box.text = average_advantage_text(average_advantage)
integrate = Button(width=175, max_width=175, label="Integrate over the whole region!")
integrate.align = "center"
integrate.on_click(on_integrate_click)
def on_tab_change(attr, old, new):
advantage_box.text = "Click within the comparison region to compute the data advantage for a performance level"
advantage_all_figures.on_change('active', on_tab_change)
advantage_column = column(advantage_all_figures, advantage_box, integrate, sizing_mode="scale_width")
########################################################################################################################
# Null verbalizer diagram
########################################################################################################################
null_tabs = []
null_all_figures = Tabs(tabs=null_tabs)
for task in neutral_tasks:
training_points, classifier_performances, pattern_performances = get_data(task)
training_points = list(training_points)
clf_results = reduct(classifier_performances, "accmax")
pvp_results = reduct(pattern_performances, "accmax", task_best_pattern[task], "normal")
ctl_results = reduct(pattern_performances, "accmax", task_best_pattern[task], "neutral")
null_plot = plot_three_polygons_bokeh(task, training_points, clf_results, pvp_results, ctl_results, clf_colors,
pvp_colors, ctl_colors)
null_plot.align = "center"
null_plot.add_tools(CrosshairTool(dimensions="width", line_alpha=0.2))
null_tabs.append(Panel(child=null_plot, title=task))
if task == "MNLI":
null_plot = plot_three_polygons_bokeh(task, training_points, clf_results, pvp_results, ctl_results, clf_colors,
pvp_colors, ctl_colors, x_log_scale=True)
null_plot.align = "center"
null_plot.add_tools(CrosshairTool(dimensions="width", line_alpha=0.2))
null_tabs.append(Panel(child=null_plot, title="MNLI (log scale)"))
null_all_figures = Tabs(tabs=null_tabs)
null_all_figures.align = "center"
########################################################################################################################
# Patterns diagram
########################################################################################################################
pattern_tabs = []
pattern_all_figures = Tabs(tabs=pattern_tabs)
for task in tasks:
pattern_plot = pattern_graph(task)
pattern_plot.align = "center"
pattern_plot.add_tools(CrosshairTool(dimensions="width", line_alpha=0.2))
pattern_tabs.append(Panel(child=pattern_plot, title=task))
pattern_all_figures = Tabs(tabs=pattern_tabs)
pattern_all_figures.align = "center"
########################################################################################################################
# Add write-up text
########################################################################################################################
main_text_style = {
"min-height": "100px",
"overflow": "hidden",
"display": "block",
"margin": "auto",
"width": f"{text_width}px",
"font-size": "18px",
}
textbox1 = Div(text=text1, style=main_text_style)
textbox2 = Div(text=text2, style=main_text_style)
textbox3 = Div(text=text3, style=main_text_style)
textbox4 = Div(text=text4, style=main_text_style)
textbox5 = Div(text=text5, style=main_text_style)
textbox1.align = "center"
textbox2.align = "center"
textbox3.align = "center"
textbox4.align = "center"
textbox5.align = "center"
########################################################################################################################
# Set up layouts and add to document
########################################################################################################################
main_body = column(textbox1, patternification, textbox2, advantage_column, textbox3, null_all_figures, textbox4, pattern_all_figures, textbox5, sizing_mode="scale_width")
main_body.align = "center"
curdoc().add_root(main_body)
curdoc().title = "一条提示抵得上多少样本数据?"
|