Spaces:
Sleeping
Sleeping
""" | |
ein notation: | |
b - batch | |
n - sequence | |
nt - text sequence | |
nw - raw wave length | |
d - dimension | |
""" | |
from __future__ import annotations | |
from typing import Callable | |
from random import random | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from torch.nn.utils.rnn import pad_sequence | |
from torchdiffeq import odeint | |
from einops import rearrange | |
from model.modules import MelSpec | |
from model.utils import ( | |
default, exists, | |
list_str_to_idx, list_str_to_tensor, | |
lens_to_mask, mask_from_frac_lengths, | |
) | |
class CFM(nn.Module): | |
def __init__( | |
self, | |
transformer: nn.Module, | |
sigma = 0., | |
odeint_kwargs: dict = dict( | |
# atol = 1e-5, | |
# rtol = 1e-5, | |
method = 'euler' # 'midpoint' | |
), | |
audio_drop_prob = 0.3, | |
cond_drop_prob = 0.2, | |
num_channels = None, | |
mel_spec_module: nn.Module | None = None, | |
mel_spec_kwargs: dict = dict(), | |
frac_lengths_mask: tuple[float, float] = (0.7, 1.), | |
vocab_char_map: dict[str: int] | None = None | |
): | |
super().__init__() | |
self.frac_lengths_mask = frac_lengths_mask | |
# mel spec | |
self.mel_spec = default(mel_spec_module, MelSpec(**mel_spec_kwargs)) | |
num_channels = default(num_channels, self.mel_spec.n_mel_channels) | |
self.num_channels = num_channels | |
# classifier-free guidance | |
self.audio_drop_prob = audio_drop_prob | |
self.cond_drop_prob = cond_drop_prob | |
# transformer | |
self.transformer = transformer | |
dim = transformer.dim | |
self.dim = dim | |
# conditional flow related | |
self.sigma = sigma | |
# sampling related | |
self.odeint_kwargs = odeint_kwargs | |
# vocab map for tokenization | |
self.vocab_char_map = vocab_char_map | |
def device(self): | |
return next(self.parameters()).device | |
def sample( | |
self, | |
cond: float['b n d'] | float['b nw'], | |
text: int['b nt'] | list[str], | |
duration: int | int['b'], | |
*, | |
lens: int['b'] | None = None, | |
steps = 32, | |
cfg_strength = 1., | |
sway_sampling_coef = None, | |
seed: int | None = None, | |
max_duration = 4096, | |
vocoder: Callable[[float['b d n']], float['b nw']] | None = None, | |
no_ref_audio = False, | |
duplicate_test = False, | |
t_inter = 0.1, | |
edit_mask = None, | |
): | |
self.eval() | |
# raw wave | |
if cond.ndim == 2: | |
cond = self.mel_spec(cond) | |
cond = rearrange(cond, 'b d n -> b n d') | |
assert cond.shape[-1] == self.num_channels | |
batch, cond_seq_len, device = *cond.shape[:2], cond.device | |
if not exists(lens): | |
lens = torch.full((batch,), cond_seq_len, device = device, dtype = torch.long) | |
# text | |
if isinstance(text, list): | |
if exists(self.vocab_char_map): | |
text = list_str_to_idx(text, self.vocab_char_map).to(device) | |
else: | |
text = list_str_to_tensor(text).to(device) | |
assert text.shape[0] == batch | |
if exists(text): | |
text_lens = (text != -1).sum(dim = -1) | |
lens = torch.maximum(text_lens, lens) # make sure lengths are at least those of the text characters | |
# duration | |
cond_mask = lens_to_mask(lens) | |
if edit_mask is not None: | |
cond_mask = cond_mask & edit_mask | |
if isinstance(duration, int): | |
duration = torch.full((batch,), duration, device = device, dtype = torch.long) | |
duration = torch.maximum(lens + 1, duration) # just add one token so something is generated | |
duration = duration.clamp(max = max_duration) | |
max_duration = duration.amax() | |
# duplicate test corner for inner time step oberservation | |
if duplicate_test: | |
test_cond = F.pad(cond, (0, 0, cond_seq_len, max_duration - 2*cond_seq_len), value = 0.) | |
cond = F.pad(cond, (0, 0, 0, max_duration - cond_seq_len), value = 0.) | |
cond_mask = F.pad(cond_mask, (0, max_duration - cond_mask.shape[-1]), value = False) | |
cond_mask = rearrange(cond_mask, '... -> ... 1') | |
step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond)) # allow direct control (cut cond audio) with lens passed in | |
if batch > 1: | |
mask = lens_to_mask(duration) | |
else: # save memory and speed up, as single inference need no mask currently | |
mask = None | |
# test for no ref audio | |
if no_ref_audio: | |
cond = torch.zeros_like(cond) | |
# neural ode | |
def fn(t, x): | |
# at each step, conditioning is fixed | |
# step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond)) | |
# predict flow | |
pred = self.transformer(x = x, cond = step_cond, text = text, time = t, mask = mask, drop_audio_cond = False, drop_text = False) | |
if cfg_strength < 1e-5: | |
return pred | |
null_pred = self.transformer(x = x, cond = step_cond, text = text, time = t, mask = mask, drop_audio_cond = True, drop_text = True) | |
return pred + (pred - null_pred) * cfg_strength | |
# noise input | |
# to make sure batch inference result is same with different batch size, and for sure single inference | |
# still some difference maybe due to convolutional layers | |
y0 = [] | |
for dur in duration: | |
if exists(seed): | |
torch.manual_seed(seed) | |
y0.append(torch.randn(dur, self.num_channels, device = self.device)) | |
y0 = pad_sequence(y0, padding_value = 0, batch_first = True) | |
t_start = 0 | |
# duplicate test corner for inner time step oberservation | |
if duplicate_test: | |
t_start = t_inter | |
y0 = (1 - t_start) * y0 + t_start * test_cond | |
steps = int(steps * (1 - t_start)) | |
t = torch.linspace(t_start, 1, steps, device = self.device) | |
if sway_sampling_coef is not None: | |
t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t) | |
trajectory = odeint(fn, y0, t, **self.odeint_kwargs) | |
sampled = trajectory[-1] | |
out = sampled | |
out = torch.where(cond_mask, cond, out) | |
if exists(vocoder): | |
out = rearrange(out, 'b n d -> b d n') | |
out = vocoder(out) | |
return out, trajectory | |
def forward( | |
self, | |
inp: float['b n d'] | float['b nw'], # mel or raw wave | |
text: int['b nt'] | list[str], | |
*, | |
lens: int['b'] | None = None, | |
noise_scheduler: str | None = None, | |
): | |
# handle raw wave | |
if inp.ndim == 2: | |
inp = self.mel_spec(inp) | |
inp = rearrange(inp, 'b d n -> b n d') | |
assert inp.shape[-1] == self.num_channels | |
batch, seq_len, dtype, device, σ1 = *inp.shape[:2], inp.dtype, self.device, self.sigma | |
# handle text as string | |
if isinstance(text, list): | |
if exists(self.vocab_char_map): | |
text = list_str_to_idx(text, self.vocab_char_map).to(device) | |
else: | |
text = list_str_to_tensor(text).to(device) | |
assert text.shape[0] == batch | |
# lens and mask | |
if not exists(lens): | |
lens = torch.full((batch,), seq_len, device = device) | |
mask = lens_to_mask(lens, length = seq_len) # useless here, as collate_fn will pad to max length in batch | |
# get a random span to mask out for training conditionally | |
frac_lengths = torch.zeros((batch,), device = self.device).float().uniform_(*self.frac_lengths_mask) | |
rand_span_mask = mask_from_frac_lengths(lens, frac_lengths) | |
if exists(mask): | |
rand_span_mask &= mask | |
# mel is x1 | |
x1 = inp | |
# x0 is gaussian noise | |
x0 = torch.randn_like(x1) | |
# time step | |
time = torch.rand((batch,), dtype = dtype, device = self.device) | |
# TODO. noise_scheduler | |
# sample xt (φ_t(x) in the paper) | |
t = rearrange(time, 'b -> b 1 1') | |
φ = (1 - t) * x0 + t * x1 | |
flow = x1 - x0 | |
# only predict what is within the random mask span for infilling | |
cond = torch.where( | |
rand_span_mask[..., None], | |
torch.zeros_like(x1), x1 | |
) | |
# transformer and cfg training with a drop rate | |
drop_audio_cond = random() < self.audio_drop_prob # p_drop in voicebox paper | |
if random() < self.cond_drop_prob: # p_uncond in voicebox paper | |
drop_audio_cond = True | |
drop_text = True | |
else: | |
drop_text = False | |
# if want rigourously mask out padding, record in collate_fn in dataset.py, and pass in here | |
# adding mask will use more memory, thus also need to adjust batchsampler with scaled down threshold for long sequences | |
pred = self.transformer(x = φ, cond = cond, text = text, time = time, drop_audio_cond = drop_audio_cond, drop_text = drop_text) | |
# flow matching loss | |
loss = F.mse_loss(pred, flow, reduction = 'none') | |
loss = loss[rand_span_mask] | |
return loss.mean(), cond, pred | |