Spaces:
Runtime error
Runtime error
MartinHeHeHe
commited on
Commit
·
692c83c
1
Parent(s):
4bf5c3b
Update app.py
Browse files
app.py
CHANGED
@@ -1,141 +1,57 @@
|
|
1 |
import os
|
2 |
-
from threading import Thread
|
3 |
from typing import Iterator
|
4 |
|
5 |
-
|
6 |
-
import spaces
|
7 |
-
import torch
|
8 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
|
10 |
-
|
11 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
12 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
This Space demonstrates model [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, a Llama 2 model with 7B parameters fine-tuned for chat instructions. Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints).
|
17 |
-
🔎 For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2).
|
18 |
-
🔨 Looking for an even more powerful model? Check out the [13B version](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat) or the large [70B model demo](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI).
|
19 |
-
"""
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
""
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
) -> Iterator[str]:
|
50 |
-
|
51 |
-
if system_prompt:
|
52 |
-
conversation.append({"role": "system", "content": system_prompt})
|
53 |
-
for user, assistant in chat_history:
|
54 |
-
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
55 |
-
conversation.append({"role": "user", "content": message})
|
56 |
-
|
57 |
-
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
58 |
-
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
59 |
-
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
60 |
-
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
61 |
-
input_ids = input_ids.to(model.device)
|
62 |
|
63 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
64 |
generate_kwargs = dict(
|
65 |
-
{"input_ids": input_ids},
|
66 |
-
streamer=streamer,
|
67 |
max_new_tokens=max_new_tokens,
|
68 |
do_sample=True,
|
69 |
top_p=top_p,
|
70 |
top_k=top_k,
|
71 |
temperature=temperature,
|
72 |
-
num_beams=1,
|
73 |
-
repetition_penalty=repetition_penalty,
|
74 |
)
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
chat_interface = gr.ChatInterface(
|
85 |
-
fn=generate,
|
86 |
-
additional_inputs=[
|
87 |
-
gr.Textbox(label="System prompt", lines=6),
|
88 |
-
gr.Slider(
|
89 |
-
label="Max new tokens",
|
90 |
-
minimum=1,
|
91 |
-
maximum=MAX_MAX_NEW_TOKENS,
|
92 |
-
step=1,
|
93 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
94 |
-
),
|
95 |
-
gr.Slider(
|
96 |
-
label="Temperature",
|
97 |
-
minimum=0.1,
|
98 |
-
maximum=4.0,
|
99 |
-
step=0.1,
|
100 |
-
value=0.6,
|
101 |
-
),
|
102 |
-
gr.Slider(
|
103 |
-
label="Top-p (nucleus sampling)",
|
104 |
-
minimum=0.05,
|
105 |
-
maximum=1.0,
|
106 |
-
step=0.05,
|
107 |
-
value=0.9,
|
108 |
-
),
|
109 |
-
gr.Slider(
|
110 |
-
label="Top-k",
|
111 |
-
minimum=1,
|
112 |
-
maximum=1000,
|
113 |
-
step=1,
|
114 |
-
value=50,
|
115 |
-
),
|
116 |
-
gr.Slider(
|
117 |
-
label="Repetition penalty",
|
118 |
-
minimum=1.0,
|
119 |
-
maximum=2.0,
|
120 |
-
step=0.05,
|
121 |
-
value=1.2,
|
122 |
-
),
|
123 |
-
],
|
124 |
-
stop_btn=None,
|
125 |
-
examples=[
|
126 |
-
["Hello there! How are you doing?"],
|
127 |
-
["Can you explain briefly to me what is the Python programming language?"],
|
128 |
-
["Explain the plot of Cinderella in a sentence."],
|
129 |
-
["How many hours does it take a man to eat a Helicopter?"],
|
130 |
-
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
131 |
-
],
|
132 |
-
)
|
133 |
-
|
134 |
-
with gr.Blocks(css="style.css") as demo:
|
135 |
-
gr.Markdown(DESCRIPTION)
|
136 |
-
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
137 |
-
chat_interface.render()
|
138 |
-
gr.Markdown(LICENSE)
|
139 |
-
|
140 |
-
if __name__ == "__main__":
|
141 |
-
demo.queue(max_size=20).launch(server_port=4444)
|
|
|
1 |
import os
|
|
|
2 |
from typing import Iterator
|
3 |
|
4 |
+
from text_generation import Client
|
|
|
|
|
|
|
5 |
|
6 |
+
model_id = 'HuggingFaceH4/zephyr-7b-beta'
|
|
|
|
|
7 |
|
8 |
+
API_URL = "https://api-inference.huggingface.co/models/" + model_id
|
9 |
+
HF_TOKEN = os.environ.get("HF_READ_TOKEN", None)
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
client = Client(
|
12 |
+
API_URL,
|
13 |
+
headers={"Authorization": f"Bearer {HF_TOKEN}"},
|
14 |
+
)
|
15 |
+
EOS_STRING = "</s>"
|
16 |
+
EOT_STRING = "<EOT>"
|
17 |
+
|
18 |
+
|
19 |
+
def get_prompt(message: str, chat_history: list[tuple[str, str]],
|
20 |
+
system_prompt: str) -> str:
|
21 |
+
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
|
22 |
+
# The first user input is _not_ stripped
|
23 |
+
do_strip = False
|
24 |
+
for user_input, response in chat_history:
|
25 |
+
user_input = user_input.strip() if do_strip else user_input
|
26 |
+
do_strip = True
|
27 |
+
texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
|
28 |
+
message = message.strip() if do_strip else message
|
29 |
+
texts.append(f'{message} [/INST]')
|
30 |
+
return ''.join(texts)
|
31 |
+
|
32 |
+
|
33 |
+
def run(message: str,
|
34 |
+
chat_history: list[tuple[str, str]],
|
35 |
+
system_prompt: str,
|
36 |
+
max_new_tokens: int = 1024,
|
37 |
+
temperature: float = 0.1,
|
38 |
+
top_p: float = 0.9,
|
39 |
+
top_k: int = 50) -> Iterator[str]:
|
40 |
+
prompt = get_prompt(message, chat_history, system_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
42 |
generate_kwargs = dict(
|
|
|
|
|
43 |
max_new_tokens=max_new_tokens,
|
44 |
do_sample=True,
|
45 |
top_p=top_p,
|
46 |
top_k=top_k,
|
47 |
temperature=temperature,
|
|
|
|
|
48 |
)
|
49 |
+
stream = client.generate_stream(prompt, **generate_kwargs)
|
50 |
+
output = ""
|
51 |
+
for response in stream:
|
52 |
+
if any([end_token in response.token.text for end_token in [EOS_STRING, EOT_STRING]]):
|
53 |
+
return output
|
54 |
+
else:
|
55 |
+
output += response.token.text
|
56 |
+
yield output
|
57 |
+
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|