CLIP-benchmarks / app.py
Jesse-marqo's picture
Update app.py
54a62dc verified
import streamlit as st
import pandas as pd
def display_csv(file_path, columns_to_display):
# Load the CSV file using pandas
df = pd.read_csv(file_path)
# Select only the specified columns
df_selected_columns = df[columns_to_display].sort_values(by=['avg_score'], ascending=False).reset_index(drop=True)
# Display the selected columns as a table
st.dataframe(df_selected_columns, height=500, width=1000)
def main():
# Hardcoded file paths
file_path1 = "merged-averaged-model_timings_2.1.0_12.1_NVIDIA_A10G_False.csv"
file_path2 = "merged-averaged-model_timings_2.1.0_12.1_Tesla_T4_False.csv" # Replace with the path to your second CSV file
# Columns to display
columns_to_display = [
"model_name", "pretrained", "avg_score", "image_time", "text_time",
"image_shape", "text_shape",
"output shape",
"params (M)", "FLOPs (B)"
]
# Add header and description
st.header("CLIP benchmarks - retrieval and inference")
st.write("CLIP benchmarks for inference and retrieval performance. Image size, context length and output dimensions are also included. Retrieval performance comes from https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_retrieval_results.csv. Tested with T4 and A10G, CUDA 12.1, Torch 2.1.0, AMP, Open CLIP v2.24 .")
# Add radio button to select the CSV file
selected_file = st.radio("Select results for a specific GPU", ("GPU: A10g", "GPU: T4"))
# Determine the file path based on the selected file
if selected_file == "GPU: A10g":
file_path = file_path1
else:
file_path = file_path2
# Call the display_csv function with the selected file path and columns
display_csv(file_path, columns_to_display)
# Custom CSS to make the app full screen
st.markdown("""
<style>
.reportview-container {
width: 100%;
height: 100%;
}
</style>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main()