Spaces:
Sleeping
Sleeping
Margaritamawyin
commited on
Commit
路
43cf32d
1
Parent(s):
ac0605a
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Cargar el modelo y el preprocesador
|
8 |
+
device = torch.device("cpu")
|
9 |
+
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-tiny-ade").to(device)
|
10 |
+
model.eval()
|
11 |
+
preprocessor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-tiny-ade")
|
12 |
+
|
13 |
+
# Funci贸n de consulta para Gradio
|
14 |
+
def query_image(img):
|
15 |
+
# Procesar la imagen con el preprocesador
|
16 |
+
inputs = preprocessor(images=img, return_tensors="pt")
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model(**inputs)
|
19 |
+
|
20 |
+
# Obtener la m谩scara de segmentaci贸n (aseg煤rate de que esta l贸gica coincida con tu configuraci贸n)
|
21 |
+
mask = torch.argmax(outputs.logits[0], dim=0).cpu().detach().numpy()
|
22 |
+
|
23 |
+
# Crear una m谩scara binaria solo para la clase de "regla" (de acuerdo a tu c贸digo original)
|
24 |
+
rule_class_id = 1 # ID de la clase "regla"
|
25 |
+
rule_mask = (mask == rule_class_id).astype(np.uint8)
|
26 |
+
|
27 |
+
# Crear una imagen RGB para visualizar la m谩scara
|
28 |
+
mask_image = np.stack([rule_mask] * 3, axis=-1)
|
29 |
+
|
30 |
+
return Image.fromarray((mask_image * 255).astype(np.uint8))
|
31 |
+
|
32 |
+
# Crear la interfaz Gradio
|
33 |
+
demo = gr.Interface(
|
34 |
+
query_image,
|
35 |
+
inputs=[gr.Image()],
|
36 |
+
outputs="image",
|
37 |
+
title="Rule Segmentation Demo",
|
38 |
+
description="Please upload an image to see rule segmentation",
|
39 |
+
)
|
40 |
+
|
41 |
+
# Lanzar la interfaz Gradio
|
42 |
+
demo.launch()
|