Update app.py
Browse files
app.py
CHANGED
@@ -10,186 +10,185 @@ import io
|
|
10 |
|
11 |
@st.cache_resource
|
12 |
def load_models():
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
def process_audio(audio_file, max_duration=600):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
|
87 |
def format_speaker_segments(diarization_result, transcription):
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
cleaned_segments = []
|
120 |
-
for i, segment in enumerate(formatted_segments):
|
121 |
-
# Skip if this segment overlaps with previous one
|
122 |
-
if i > 0 and segment['start'] < cleaned_segments[-1]['end']:
|
123 |
-
continue
|
124 |
-
cleaned_segments.append(segment)
|
125 |
-
|
126 |
-
return cleaned_segments
|
127 |
|
128 |
def format_timestamp(seconds):
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
|
133 |
def main():
|
134 |
-
|
135 |
-
|
136 |
|
137 |
-
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
if __name__ == "__main__":
|
195 |
-
|
|
|
10 |
|
11 |
@st.cache_resource
|
12 |
def load_models():
|
13 |
+
try:
|
14 |
+
diarization = Pipeline.from_pretrained(
|
15 |
+
"pyannote/speaker-diarization",
|
16 |
+
use_auth_token=st.secrets["hf_token"]
|
17 |
+
)
|
18 |
+
|
19 |
+
transcriber = whisper.load_model("base")
|
20 |
+
|
21 |
+
summarizer = tf_pipeline(
|
22 |
+
"summarization",
|
23 |
+
model="facebook/bart-large-cnn",
|
24 |
+
device=0 if torch.cuda.is_available() else -1
|
25 |
+
)
|
26 |
+
|
27 |
+
if not diarization or not transcriber or not summarizer:
|
28 |
+
raise ValueError("One or more models failed to load")
|
29 |
+
|
30 |
+
return diarization, transcriber, summarizer
|
31 |
+
except Exception as e:
|
32 |
+
st.error(f"Error loading models: {str(e)}")
|
33 |
+
st.error("Debug info: Check if HF token is valid and has necessary permissions")
|
34 |
+
return None, None, None
|
35 |
|
36 |
def process_audio(audio_file, max_duration=600):
|
37 |
+
try:
|
38 |
+
audio_bytes = io.BytesIO(audio_file.getvalue())
|
39 |
+
|
40 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
41 |
+
try:
|
42 |
+
if audio_file.name.lower().endswith('.mp3'):
|
43 |
+
audio = AudioSegment.from_mp3(audio_bytes)
|
44 |
+
else:
|
45 |
+
audio = AudioSegment.from_wav(audio_bytes)
|
46 |
+
|
47 |
+
# Standardize format
|
48 |
+
audio = audio.set_frame_rate(16000)
|
49 |
+
audio = audio.set_channels(1)
|
50 |
+
audio = audio.set_sample_width(2)
|
51 |
+
|
52 |
+
audio.export(
|
53 |
+
tmp.name,
|
54 |
+
format="wav",
|
55 |
+
parameters=["-ac", "1", "-ar", "16000"]
|
56 |
+
)
|
57 |
+
tmp_path = tmp.name
|
58 |
+
|
59 |
+
except Exception as e:
|
60 |
+
st.error(f"Error converting audio: {str(e)}")
|
61 |
+
return None
|
62 |
|
63 |
+
diarization, transcriber, summarizer = load_models()
|
64 |
+
if not all([diarization, transcriber, summarizer]):
|
65 |
+
return "Model loading failed"
|
66 |
|
67 |
+
with st.spinner("Identifying speakers..."):
|
68 |
+
diarization_result = diarization(tmp_path)
|
69 |
+
|
70 |
+
with st.spinner("Transcribing audio..."):
|
71 |
+
transcription = transcriber.transcribe(tmp_path)
|
72 |
+
|
73 |
+
with st.spinner("Generating summary..."):
|
74 |
+
summary = summarizer(transcription["text"], max_length=130, min_length=30)
|
75 |
|
76 |
+
os.unlink(tmp_path)
|
77 |
+
|
78 |
+
return {
|
79 |
+
"diarization": diarization_result,
|
80 |
+
"transcription": transcription,
|
81 |
+
"summary": summary[0]["summary_text"]
|
82 |
+
}
|
83 |
+
|
84 |
+
except Exception as e:
|
85 |
+
st.error(f"Error processing audio: {str(e)}")
|
86 |
+
return None
|
87 |
|
88 |
def format_speaker_segments(diarization_result, transcription):
|
89 |
+
if diarization_result is None:
|
90 |
+
return []
|
91 |
+
|
92 |
+
formatted_segments = []
|
93 |
+
whisper_segments = transcription.get('segments', [])
|
94 |
+
|
95 |
+
try:
|
96 |
+
for turn, _, speaker in diarization_result.itertracks(yield_label=True):
|
97 |
+
current_text = ""
|
98 |
+
# Find matching whisper segments for this speaker's time window
|
99 |
+
for w_segment in whisper_segments:
|
100 |
+
w_start = float(w_segment['start'])
|
101 |
+
w_end = float(w_segment['end'])
|
102 |
+
|
103 |
+
# If whisper segment overlaps with speaker segment
|
104 |
+
if (w_start >= turn.start and w_start < turn.end) or \
|
105 |
+
(w_end > turn.start and w_end <= turn.end):
|
106 |
+
current_text += w_segment['text'].strip() + " "
|
107 |
+
|
108 |
+
formatted_segments.append({
|
109 |
+
'speaker': str(speaker),
|
110 |
+
'start': float(turn.start),
|
111 |
+
'end': float(turn.end),
|
112 |
+
'text': current_text.strip()
|
113 |
+
})
|
114 |
+
|
115 |
+
except Exception as e:
|
116 |
+
st.error(f"Error formatting segments: {str(e)}")
|
117 |
+
return []
|
118 |
+
|
119 |
+
return formatted_segments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
def format_timestamp(seconds):
|
122 |
+
minutes = int(seconds // 60)
|
123 |
+
seconds = seconds % 60
|
124 |
+
return f"{minutes:02d}:{seconds:05.2f}"
|
125 |
|
126 |
def main():
|
127 |
+
st.title("Multi-Speaker Audio Analyzer")
|
128 |
+
st.write("Upload an audio file (MP3/WAV) up to 5 minutes long for best performance")
|
129 |
|
130 |
+
uploaded_file = st.file_uploader("Choose a file", type=["mp3", "wav"])
|
131 |
|
132 |
+
if uploaded_file:
|
133 |
+
file_size = len(uploaded_file.getvalue()) / (1024 * 1024)
|
134 |
+
st.write(f"File size: {file_size:.2f} MB")
|
135 |
+
|
136 |
+
st.audio(uploaded_file, format='audio/wav')
|
137 |
+
|
138 |
+
if st.button("Analyze Audio"):
|
139 |
+
if file_size > 200:
|
140 |
+
st.error("File size exceeds 200MB limit")
|
141 |
+
else:
|
142 |
+
results = process_audio(uploaded_file)
|
143 |
+
|
144 |
+
if results:
|
145 |
+
tab1, tab2, tab3 = st.tabs(["Speakers", "Transcription", "Summary"])
|
146 |
+
|
147 |
+
with tab1:
|
148 |
+
st.write("Speaker Timeline:")
|
149 |
+
segments = format_speaker_segments(
|
150 |
+
results["diarization"],
|
151 |
+
results["transcription"]
|
152 |
+
)
|
153 |
+
|
154 |
+
if segments:
|
155 |
+
for segment in segments:
|
156 |
+
col1, col2, col3 = st.columns([2,3,5])
|
157 |
+
|
158 |
+
with col1:
|
159 |
+
speaker_num = int(segment['speaker'].split('_')[1])
|
160 |
+
colors = ['🔵', '🔴']
|
161 |
+
speaker_color = colors[speaker_num % len(colors)]
|
162 |
+
st.write(f"{speaker_color} {segment['speaker']}")
|
163 |
+
|
164 |
+
with col2:
|
165 |
+
start_time = format_timestamp(segment['start'])
|
166 |
+
end_time = format_timestamp(segment['end'])
|
167 |
+
st.write(f"{start_time} → {end_time}")
|
168 |
+
|
169 |
+
with col3:
|
170 |
+
if segment['text']:
|
171 |
+
st.write(f"\"{segment['text']}\"")
|
172 |
+
else:
|
173 |
+
st.write("(no speech detected)")
|
174 |
+
|
175 |
+
st.markdown("---")
|
176 |
+
else:
|
177 |
+
st.warning("No speaker segments detected")
|
178 |
+
|
179 |
+
with tab2:
|
180 |
+
st.write("Transcription:")
|
181 |
+
if "text" in results["transcription"]:
|
182 |
+
st.write(results["transcription"]["text"])
|
183 |
+
else:
|
184 |
+
st.warning("No transcription available")
|
185 |
+
|
186 |
+
with tab3:
|
187 |
+
st.write("Summary:")
|
188 |
+
if results["summary"]:
|
189 |
+
st.write(results["summary"])
|
190 |
+
else:
|
191 |
+
st.warning("No summary available")
|
192 |
|
193 |
if __name__ == "__main__":
|
194 |
+
main()
|