Manyue-DataScientist's picture
Update app.py
853df82 verified
raw
history blame
3.45 kB
import streamlit as st
from pyannote.audio import Pipeline
import whisper
import tempfile
import os
import torch
from transformers import pipeline as tf_pipeline
from pydub import AudioSegment
@st.cache_resource
def load_models():
try:
diarization = Pipeline.from_pretrained(
"pyannote/speaker-diarization",
use_auth_token=st.secrets["hf_token"]
)
transcriber = whisper.load_model("turbo")
summarizer = tf_pipeline(
"summarization",
model="facebook/bart-large-cnn",
device=0 if torch.cuda.is_available() else -1
)
return diarization, transcriber, summarizer
except Exception as e:
st.error(f"Error loading models: {str(e)}")
return None, None, None
def process_audio(audio_file, max_duration=600): # limit to 5 minutes initially
try:
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
# Convert MP3 to WAV if needed
if audio_file.name.endswith('.mp3'):
audio = AudioSegment.from_mp3(audio_file)
else:
audio = AudioSegment.from_wav(audio_file)
# Export as WAV
audio.export(tmp.name, format="wav")
tmp_path = tmp.name
# Get cached models
diarization, transcriber, summarizer = load_models()
if not all([diarization, transcriber, summarizer]):
return "Model loading failed"
# Process with progress bar
with st.spinner("Identifying speakers..."):
diarization_result = diarization(tmp_path)
with st.spinner("Transcribing audio..."):
transcription = transcriber.transcribe(tmp_path)
with st.spinner("Generating summary..."):
summary = summarizer(transcription["text"], max_length=130, min_length=30)
# Cleanup
os.unlink(tmp_path)
return {
"diarization": diarization_result,
"transcription": transcription["text"],
"summary": summary[0]["summary_text"]
}
except Exception as e:
st.error(f"Error processing audio: {str(e)}")
return None
def main():
st.title("Multi-Speaker Audio Analyzer")
st.write("Upload an audio file (MP3/WAV) up to 5 minutes long for best performance")
uploaded_file = st.file_uploader("Choose a file", type=["mp3", "wav"])
if uploaded_file:
st.audio(uploaded_file, format='audio/wav')
if st.button("Analyze Audio"):
results = process_audio(uploaded_file)
if results:
# Display results in tabs
tab1, tab2, tab3 = st.tabs(["Speakers", "Transcription", "Summary"])
with tab1:
st.write("Speaker Segments:")
for turn, _, speaker in results["diarization"].itertracks(yield_label=True):
st.write(f"{speaker}: {turn.start:.1f}s → {turn.end:.1f}s")
with tab2:
st.write("Transcription:")
st.write(results["transcription"])
with tab3:
st.write("Summary:")
st.write(results["summary"])
if __name__ == "__main__":
main()