Spaces:
Sleeping
Sleeping
import torch | |
from transformers import CLIPModel, CLIPProcessor, AutoTokenizer, MarianMTModel, MarianTokenizer | |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler | |
import numpy as np | |
from typing import List, Tuple, Optional, Dict, Any | |
import gradio as gr | |
from pathlib import Path | |
import json | |
import logging | |
from dataclasses import dataclass | |
import gc | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' | |
) | |
logger = logging.getLogger(__name__) | |
class GenerationConfig: | |
num_images: int = 1 | |
num_inference_steps: int = 50 | |
guidance_scale: float = 7.5 | |
seed: Optional[int] = None | |
class ModelCache: | |
def __init__(self, cache_dir: Path): | |
self.cache_dir = cache_dir | |
self.cache_dir.mkdir(parents=True, exist_ok=True) | |
def load_model(self, model_id: str, load_func: callable, cache_name: str) -> Any: | |
try: | |
logger.info(f"Loading {cache_name}") | |
return load_func(model_id) | |
except Exception as e: | |
logger.error(f"Error loading model {cache_name}: {str(e)}") | |
raise | |
class EnhancedBanglaSDGenerator: | |
def __init__( | |
self, | |
banglaclip_weights_path: str, | |
cache_dir: str, | |
device: Optional[torch.device] = None | |
): | |
self.device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
logger.info(f"Using device: {self.device}") | |
self.cache = ModelCache(Path(cache_dir)) | |
self._initialize_models(banglaclip_weights_path) | |
self._load_context_data() | |
def _initialize_models(self, banglaclip_weights_path: str): | |
try: | |
# Initialize translation models | |
self.bn2en_model_name = "Helsinki-NLP/opus-mt-bn-en" | |
self.translator = self.cache.load_model( | |
self.bn2en_model_name, | |
MarianMTModel.from_pretrained, | |
"translator" | |
).to(self.device) | |
self.trans_tokenizer = MarianTokenizer.from_pretrained(self.bn2en_model_name) | |
# Initialize CLIP models | |
self.clip_model_name = "openai/clip-vit-base-patch32" | |
self.bangla_text_model = "csebuetnlp/banglabert" | |
self.banglaclip_model = self._load_banglaclip_model(banglaclip_weights_path) | |
self.processor = CLIPProcessor.from_pretrained(self.clip_model_name) | |
self.tokenizer = AutoTokenizer.from_pretrained(self.bangla_text_model) | |
# Initialize Stable Diffusion | |
self._initialize_stable_diffusion() | |
except Exception as e: | |
logger.error(f"Error initializing models: {str(e)}") | |
raise RuntimeError(f"Failed to initialize models: {str(e)}") | |
def _initialize_stable_diffusion(self): | |
"""Initialize Stable Diffusion pipeline with optimized settings.""" | |
self.pipe = self.cache.load_model( | |
"runwayml/stable-diffusion-v1-5", | |
lambda model_id: StableDiffusionPipeline.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
safety_checker=None | |
), | |
"stable_diffusion" | |
) | |
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config( | |
self.pipe.scheduler.config, | |
use_karras_sigmas=True, | |
algorithm_type="dpmsolver++" | |
) | |
self.pipe = self.pipe.to(self.device) | |
# Memory optimization | |
self.pipe.enable_attention_slicing() | |
if torch.cuda.is_available(): | |
self.pipe.enable_sequential_cpu_offload() | |
def _load_banglaclip_model(self, weights_path: str) -> CLIPModel: | |
try: | |
if not Path(weights_path).exists(): | |
raise FileNotFoundError(f"BanglaCLIP weights not found at {weights_path}") | |
clip_model = CLIPModel.from_pretrained(self.clip_model_name) | |
state_dict = torch.load(weights_path, map_location=self.device) | |
cleaned_state_dict = { | |
k.replace('module.', '').replace('clip.', ''): v | |
for k, v in state_dict.items() | |
if k.replace('module.', '').replace('clip.', '').startswith(('text_model.', 'vision_model.')) | |
} | |
clip_model.load_state_dict(cleaned_state_dict, strict=False) | |
return clip_model.to(self.device) | |
except Exception as e: | |
logger.error(f"Failed to load BanglaCLIP model: {str(e)}") | |
raise | |
def _load_context_data(self): | |
"""Load location and scene context data.""" | |
self.location_contexts = { | |
'কক্সবাজার': 'Cox\'s Bazar beach, longest natural sea beach in the world, sandy beach', | |
'সেন্টমার্টিন': 'Saint Martin\'s Island, coral island, tropical paradise', | |
'সুন্দরবন': 'Sundarbans mangrove forest, Bengal tigers, riverine forest' | |
} | |
self.scene_contexts = { | |
'সৈকত': 'beach, seaside, waves, sandy shore, ocean view', | |
'সমুদ্র': 'ocean, sea waves, deep blue water, horizon', | |
'পাহাড়': 'mountains, hills, valleys, scenic landscape' | |
} | |
def _translate_text(self, bangla_text: str) -> str: | |
"""Translate Bangla text to English.""" | |
inputs = self.trans_tokenizer(bangla_text, return_tensors="pt", padding=True) | |
inputs = {k: v.to(self.device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
outputs = self.translator.generate(**inputs) | |
translated = self.trans_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return translated | |
def _get_text_embedding(self, text: str): | |
"""Get text embedding from BanglaCLIP model.""" | |
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True) | |
inputs = {k: v.to(self.device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
outputs = self.banglaclip_model.get_text_features(**inputs) | |
return outputs | |
def generate_image( | |
self, | |
bangla_text: str, | |
config: Optional[GenerationConfig] = None | |
) -> Tuple[List[Any], str]: | |
if not bangla_text.strip(): | |
raise ValueError("Empty input text") | |
config = config or GenerationConfig() | |
try: | |
if config.seed is not None: | |
torch.manual_seed(config.seed) | |
enhanced_prompt = self._enhance_prompt(bangla_text) | |
negative_prompt = self._get_negative_prompt() | |
with torch.autocast(self.device.type): | |
result = self.pipe( | |
prompt=enhanced_prompt, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=config.num_images, | |
num_inference_steps=config.num_inference_steps, | |
guidance_scale=config.guidance_scale | |
) | |
return result.images, enhanced_prompt | |
except Exception as e: | |
logger.error(f"Error during image generation: {str(e)}") | |
raise | |
def _enhance_prompt(self, bangla_text: str) -> str: | |
"""Enhance prompt with context and style information.""" | |
translated_text = self._translate_text(bangla_text) | |
# Gather contexts | |
contexts = [] | |
contexts.extend(context for loc, context in self.location_contexts.items() if loc in bangla_text) | |
contexts.extend(context for scene, context in self.scene_contexts.items() if scene in bangla_text) | |
# Add photo style | |
photo_style = [ | |
"professional photography", | |
"high resolution", | |
"4k", | |
"detailed", | |
"realistic", | |
"beautiful composition" | |
] | |
# Combine all parts | |
all_parts = [translated_text] + contexts + photo_style | |
return ", ".join(dict.fromkeys(all_parts)) | |
def _get_negative_prompt(self) -> str: | |
return ( | |
"blurry, low quality, pixelated, cartoon, anime, illustration, " | |
"painting, drawing, artificial, fake, oversaturated, undersaturated" | |
) | |
def cleanup(self): | |
"""Clean up GPU memory""" | |
if hasattr(self, 'pipe'): | |
del self.pipe | |
if hasattr(self, 'banglaclip_model'): | |
del self.banglaclip_model | |
if hasattr(self, 'translator'): | |
del self.translator | |
torch.cuda.empty_cache() | |
gc.collect() | |
def create_gradio_interface(): | |
"""Create and configure the Gradio interface.""" | |
cache_dir = Path("model_cache") | |
generator = None | |
def initialize_generator(): | |
nonlocal generator | |
if generator is None: | |
generator = EnhancedBanglaSDGenerator( | |
banglaclip_weights_path="banglaclip_model_epoch_10_quantized.pth", | |
cache_dir=str(cache_dir) | |
) | |
return generator | |
def cleanup_generator(): | |
nonlocal generator | |
if generator is not None: | |
generator.cleanup() | |
generator = None | |
def generate_images(text: str, num_images: int, steps: int, guidance_scale: float, seed: Optional[int]) -> Tuple[List[Any], str]: | |
if not text.strip(): | |
return None, "দয়া করে কিছু টেক্সট লিখুন" | |
try: | |
gen = initialize_generator() | |
config = GenerationConfig( | |
num_images=int(num_images), | |
num_inference_steps=int(steps), | |
guidance_scale=float(guidance_scale), | |
seed=int(seed) if seed else None | |
) | |
images, prompt = gen.generate_image(text, config) | |
cleanup_generator() | |
return images, prompt | |
except Exception as e: | |
logger.error(f"Error in Gradio interface: {str(e)}") | |
cleanup_generator() | |
return None, f"ছবি তৈরি ব্যর্থ হয়েছে: {str(e)}" | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=generate_images, | |
inputs=[ | |
gr.Textbox( | |
label="বাংলা টেক্সট লিখুন", | |
placeholder="যেকোনো বাংলা টেক্সট লিখুন...", | |
lines=3 | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=1, | |
label="ছবির সংখ্যা" | |
), | |
gr.Slider( | |
minimum=20, | |
maximum=100, | |
step=1, | |
value=50, | |
label="স্টেপস" | |
), | |
gr.Slider( | |
minimum=1.0, | |
maximum=20.0, | |
step=0.5, | |
value=7.5, | |
label="গাইডেন্স স্কেল" | |
), | |
gr.Number( | |
label="সীড (ঐচ্ছিক)", | |
precision=0 | |
) | |
], | |
outputs=[ | |
gr.Gallery(label="তৈরি করা ছবি"), | |
gr.Textbox(label="ব্যবহৃত প্রম্পট") | |
], | |
title="বাংলা টেক্সট থেকে ছবি তৈরি", | |
description="যেকোনো বাংলা টেক্সট দিয়ে উচ্চমানের ছবি তৈরি করুন" | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_gradio_interface() | |
# Fixed queue configuration for newer Gradio versions | |
demo.queue().launch(share=True) |