Spaces:
Sleeping
Sleeping
File size: 7,044 Bytes
d7ed18f ff4ea1e d7ed18f ff4ea1e d7ed18f ff4ea1e d7ed18f 41e41b6 d7ed18f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import ast
import json
import streamlit as st
import pandas as pd
from langchain.agents.agent_types import AgentType
from langchain_experimental.agents import create_csv_agent
from langchain_groq import ChatGroq
from langchain.memory import ChatMessageHistory
from groq import Groq
import os
# Initialize Groq client and model
client = Groq(api_key=os.getenv('Groq_API'))
MODEL = 'llama3-70b-8192'
# Initialize chat history
history = ChatMessageHistory()
history.add_user_message("hi!")
history.add_ai_message("whats up?")
# Initialize language model
llm = ChatGroq(
temperature=0,
groq_api_key=os.getenv('Groq_API'),
model_name='llama3-70b-8192'
)
# Create CSV agent
agent = create_csv_agent(
llm,
"data/Financial_data.csv",
verbose=True,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
max_iterations=5,
handle_parsing_errors=True
)
# Functions to handle conversations
def convo_agent(question, chat_history):
response = 'I was built to answer questions related to financials MSFT, TSLA and AAPL. Let me know if you have any questions on these.'
return {'answer': response}
def csv_agent(question, chat_history):
prompt = (
"""
Let's decode the way to respond to the queries. The responses depend on the type of information requested in the query.
Return just the data, don't take effort of creating plots, prints and all.
No explanation needed. Return just the dict
Always include units in response .
1. If the query requires a table, format your answer like this:
{"table": {"columns": ["column1", "column2", ...], "data": [[value1, value2, ...], [value1, value2, ...], ...]}}
2. For a bar chart, respond like this:
{"bar": {"columns": ["A", "B", "C", ...], "data": [25, 24, 10, ...]}}
3. If a line chart is more appropriate, your reply should look like this:
{"line": {"columns": ["A", "B", "C", ...], "data": [25, 24, 10, ...]}}
Note: We only accommodate two types of charts: "bar" and "line".
4. For a plain question that doesn't need a chart or table, your response should be:
{"answer": "Your answer goes here"}
For example:
{"answer": "The Product with the highest Orders is '15143Exfo'"}
5. If the answer is not known or available, respond with:
{"answer": "I do not know."}
Return all output as a string. Remember to encase all strings in the "columns" list and data list in double quotes.
For example: {"columns": ["Products", "Orders"], "data": [["51993Masc", 191], ["49631Foun", 152]]}
Return all the numerical values in int format only.
Now, let's tackle the query step by step. Here's the query for you to work on:"""
+
question
)
response = agent.run(prompt)
return ast.literal_eval(response)
# Define tools and function mapping
tool_convo_agent = {
"type": "function",
"function": {
"name": "convo_agent",
"description": "Answers questions like chit chat or simple friendly messages",
"parameters": {
"type": "object",
"properties": {
"question": {"type": "string", "description": "The user question"}
},
"required": ["question"],
},
},
}
tool_fin_agent = {
"type": "function",
"function": {
"name": "csv_agent",
"description": "Answers questions related to financial metrics of us Apple, Microsoft and Tesla.",
"parameters": {
"type": "object",
"properties": {
"question": {"type": "string", "description": "The user question"}
},
"required": ["question"],
},
},
}
tools = [tool_convo_agent, tool_fin_agent]
function_map = {
"csv_agent": csv_agent,
"convo_agent": convo_agent
}
# Conversation handling
def run_conversation(chat_history, user_prompt, tools):
final_prompt = {'chat_history':{chat_history}, 'question':{user_prompt}}
messages = [
{"role": "system", "content": "You are an efficient agent that determines which function to use in order to answer user question."},
{"role": "user", "content": str(final_prompt)},
]
response = client.chat.completions.create(
model=MODEL,
messages=messages,
tools=tools,
tool_choice="auto",
max_tokens=4096
)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
return tool_calls
def get_response(question):
try:
history.add_user_message(question)
chat_history = str(history.messages)
agents = run_conversation(chat_history, question, tools)
func_to_call = agents[0].function.name
if func_to_call in function_map:
question_to_run = ast.literal_eval(agents[0].function.arguments)['question']
result = function_map[func_to_call](question_to_run, chat_history)
else:
result = {"error": "Something went Wrong"}
if 'error' in result:
return "Something went wrong"
print(result)
history.add_ai_message(str(result))
return result
except Exception as e:
return f"Something went wrong: {e}"
# Response writing for Streamlit
def write_answer(response_dict):
if not isinstance(response_dict, dict):
return "Invalid response format received."
if "answer" in response_dict:
return response_dict
if "bar" in response_dict:
data = response_dict["bar"]
try:
df_data = {col: [x[i] if isinstance(x, list) else x for x in data['data']] for i, col in enumerate(data['columns'])}
df = pd.DataFrame(df_data)
df.set_index("Year", inplace=True)
st.bar_chart(df)
return {'bar': ''}
except ValueError:
st.error(f"Couldn't create DataFrame from data: {data}")
if "line" in response_dict:
data = response_dict["line"]
try:
df_data = {col: [x[i] for x in data['data']] for i, col in enumerate(data['columns'])}
df = pd.DataFrame(df_data)
df.set_index("Year", inplace=True)
st.line_chart(df)
return {'line': ''}
except ValueError:
st.error(f"Couldn't create DataFrame from data: {data}")
if "table" in response_dict:
data = response_dict["table"]
try:
clean_data = [
[int(x.replace(',', '')) if isinstance(x, str) and x.replace(',', '').isdigit() else x for x in row]
for row in data["data"]
]
df = pd.DataFrame(clean_data, columns=data["columns"])
st.table(df)
return {'table': ''}
except ValueError as e:
st.error(f"Couldn't create DataFrame from data: {data}. Error: {e}")
return "No valid response type found."
|