import gradio as gr from PIL import Image from byaldi import RAGMultiModalModel from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import torch # Load models colpali def load_models(): RAG = RAGMultiModalModel.from_pretrained("vidore/colpali") model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.float32) # float32 for CPU processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) return RAG, model, processor RAG, model, processor = load_models() # Function for OCR and search def ocr_and_search(image, keyword): text_query = "Extract all the text in Hindi and English from the image." messages = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": text_query}, ], } ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ).to("cpu") # Generate text with torch.no_grad(): generated_ids = model.generate(**inputs, max_new_tokens=2000) generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] # Decode output while avoiding any coordinate information extracted_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=True )[0] extracted_text = extracted_text.replace("The text in the image is:", "").strip() # Filter out any unwanted text (like coordinates) extracted_text = ' '.join(filter(lambda x: not any(char.isdigit() for char in x), extracted_text.split())) # Separate English and Hindi text using a simple heuristic english_text = ' '.join(filter(lambda x: all((char.islower() or char.isupper()) or char == "'" for char in x), extracted_text.split())) hindi_text = ' '.join(filter(lambda x: any(ord(char) >= 128 for char in x), extracted_text.split())) # Perform keyword search keyword_lower = keyword.lower().strip() matched_keywords = [] if keyword_lower: if keyword_lower in extracted_text.lower(): matched_keywords = [keyword] # Prepare plain text output plain_text_output = ( f"- English: {' '.join(english_text.split()) if english_text else 'No English text found.'}\n\n" f"- Hindi: {' '.join(hindi_text.split()) if hindi_text else 'No Hindi text found.'}" ) return extracted_text, matched_keywords, plain_text_output # Gradio App function def app(image, keyword): # Call OCR and search function extracted_text, matched_keywords, plain_text_output = ocr_and_search(image, keyword) # Format search results search_results_str = "\n".join(matched_keywords) if matched_keywords else "No matches found for the keyword." return extracted_text, search_results_str, plain_text_output # Gradio Interface iface = gr.Interface( fn=app, inputs=[ gr.Image(type="pil", label="Upload an Image"), gr.Textbox(label="Enter keyword to search in extracted text", placeholder="Keyword") ], outputs=[ gr.Textbox(label="Extracted Text"), gr.Textbox(label="Search Results"), gr.Textbox(label="Plain Text Output", lines=10) # For plain text output ], title="Optical Character Recognition with Keyword Search from Images", ) # Launch Gradio App iface.launch()