import gradio as gr import modin.pandas as pd import torch from PIL import Image import imageio from diffusers import StableDiffusionXLImg2ImgPipeline device = "cuda" if torch.cuda.is_available() else "cpu" model_id = "stabilityai/stable-diffusion-xl-refiner-1.0" #adapter = T2IAdapter.from_pretrained( #"TencentARC/t2i-adapter-sketch-sdxl-1.0") #scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(model_id) pipe = pipe.to(device) def resize(value,img): img = Image.open(img) img = img.resize((value,value)) return img def infer(source_img, prompt, negative_prompt, guide, steps, seed): generator = torch.Generator(device).manual_seed(seed) imageio.imwrite("data.png", source_img) src = resize(768, 'data.png') image = pipe(prompt, negative_prompt=negative_prompt, image=src, strength=1, guidance_scale=guide, num_inference_steps=steps).images[0] return image gr.Interface(fn=infer, inputs=[gr.Sketchpad(type='numpy'), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Textbox(label='What you Do Not want the AI to generate.'), gr.Slider(5, 15, value = 10, label = 'Guidance Scale'), gr.Slider(25, 50, value = 25, step = 25, label = 'Number of Iterations'), gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True)], outputs='image', title = "Stable Diffusion XL 1.0 Doodle to Image CPU", description = "For more information on Stable Diffusion XL 1.0 see https://huggingface.co./stabilityai/stable-diffusion-xl-refiner-1.0

Sketch an Image then enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: Manjushri").queue(max_size=5).launch()