|
import gradio as gr |
|
import modin.pandas as pd |
|
import torch |
|
from PIL import Image |
|
import imageio |
|
from diffusers import StableDiffusionXLImg2ImgPipeline |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model_id = "stabilityai/stable-diffusion-xl-refiner-1.0" |
|
|
|
|
|
|
|
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(model_id) |
|
pipe = pipe.to(device) |
|
|
|
def resize(value,img): |
|
img = Image.open(img) |
|
img = img.resize((value,value)) |
|
return img |
|
|
|
def infer(source_img, prompt, negative_prompt, guide, steps, seed): |
|
generator = torch.Generator(device).manual_seed(seed) |
|
imageio.imwrite("data.png", source_img) |
|
src = resize(768, 'data.png') |
|
image = pipe(prompt, negative_prompt=negative_prompt, image=src, strength=1, guidance_scale=guide, num_inference_steps=steps).images[0] |
|
return image |
|
|
|
gr.Interface(fn=infer, inputs=[gr.Sketchpad(type='numpy'), |
|
gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), |
|
gr.Textbox(label='What you Do Not want the AI to generate.'), |
|
gr.Slider(5, 15, value = 10, label = 'Guidance Scale'), |
|
gr.Slider(25, 50, value = 25, step = 25, label = 'Number of Iterations'), |
|
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True)], |
|
outputs='image', |
|
title = "Stable Diffusion XL 1.0 Doodle to Image CPU", |
|
description = "For more information on Stable Diffusion XL 1.0 see https://huggingface.co./stabilityai/stable-diffusion-xl-refiner-1.0 <br><br>Sketch an Image then enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", |
|
article = "Code Monkey: <a href=\"https://huggingface.co./Manjushri\">Manjushri</a>").queue(max_size=5).launch() |