File size: 1,765 Bytes
2aad98f
 
 
 
 
c961a5c
2aad98f
46c84e7
26c6908
c961a5c
 
2aad98f
 
46c84e7
2aad98f
e670e04
c961a5c
 
 
2aad98f
46c84e7
bda4f19
 
4b04168
2442d9d
e62b55c
 
2442d9d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline

device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("prompthero/openjourney-v4", safety_checker=None)
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, safety_checker=None)
upscaler = upscaler.to(device)
pipe = pipe.to(device)

def genie (prompt, scale, steps, seed):
     generator = torch.Generator(device=device).manual_seed(seed)
     images = pipe(prompt, num_inference_steps=steps, guidance_scale=scale, generator=generator).images[0]
     low_res_latents = pipe(prompt, generator=generator, output_type="latent").images
     upscaled_image = upscaler(prompt=prompt, image=low_res_latents, num_inference_steps=20, guidance_scale=0, generator=generator).images[0]
     return (images, upscaled_image)
    
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), 
                               gr.Slider(1, maximum=15, value=10, step=.25), 
                               gr.Slider(1, maximum=50, value=25, step=1), 
                               gr.Slider(minimum=1, step=1, maximum=987654321, randomize=True)], 
             outputs=['image', 'image'],
             title = 'OpenJourney V4 CPU', 
             description = "OJ V4 CPU. <b>WARNING:</b> Extremely Slow. 35s/Iteration. Expect 8-16mins an image for 15-30 iterations respectively. 50 iterations takes ~28mins.", 
             article = "Code Monkey: <a href=\"https://huggingface.co./Manjushri\">Manjushri</a>").launch(debug=True, max_threads=True)