Manjushri's picture
Duplicate from Manjushri/OJ-V4-CPU
34fbcbd
raw
history blame
1.79 kB
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("prompthero/openjourney-v4", safety_checker=None)
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", safety_checker=None)
upscaler = upscaler.to(device)
pipe = pipe.to(device)
def genie (Prompt, scale, steps, seed):
generator = torch.Generator(device=device).manual_seed(seed)
#images = pipe(prompt, num_inference_steps=steps, guidance_scale=scale, generator=generator).images[0]
low_res_latents = pipe(Prompt, num_inference_steps=steps, guidance_scale=scale, generator=generator, output_type="latent").images
upscaled_image = upscaler(prompt='', image=low_res_latents, num_inference_steps=5, guidance_scale=0, generator=generator).images[0]
return upscaled_image
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
gr.Slider(1, maximum=15, value=10, step=.25),
gr.Slider(1, maximum=50, value=25, step=1),
gr.Slider(minimum=1, step=1, maximum=987654321, randomize=True)],
outputs = 'image',
title = 'OpenJourney V4 with SD 2.1 2X Upscaler - CPU',
description = "OJ V4 CPU. <b>WARNING:</b> Extremely Slow. 35s/Iteration. Expect 8-16mins an image for 15-30 iterations respectively. 50 iterations takes ~28mins.",
article = "Code Monkey: <a href=\"https://huggingface.co./Manjushri\">Manjushri</a>").launch(debug=True, max_threads=True)