import streamlit as st def load_topic_transfomers(): from transformers import pipeline try: topic_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli",device="cuda", compute_type="float16") except Exception as e: topic_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") print("Error: ", e) return topic_classifier def suggest_topic(text): while len(text)> 1024: text = summarize(whole_text[:-10]) possible_topics = ["Gadgets", 'Business','Finance', 'Health', 'Sports', 'Politics','Government','Science','Education', 'Travel', 'Tourism', 'Finance & Economics','Market','Technology','Scientific Discovery', 'Entertainment','Environment','News & Media' "Space,Universe & Cosmos", "Fashion", "Manufacturing and Constructions","Law & Crime","Motivation", "Development & Socialization", "Archeology"] result = topic_classifier(text, possible_topics) return result['labels'] st.title("Topic Suggestion") with st.spinner(Loading Model): topic_classifier = load_topic_transfomers() st.success(Model_loaded) whole_text = st.text_input("Enter the text Here: ") predicted_topic = suggest_topic(whole_text) st.write('Suggested Topics') for i in predicted_topic: st.write(i)