File size: 5,880 Bytes
eb06a89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import gradio as gr
import cv2
import pandas as pd
import random
from datetime import datetime

import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore

from ultralytics import YOLO
from tracker import Tracker
from utils import ID2LABEL, MODEL_PATH, AUTHEN_ACCOUNT, compute_color_for_labels


cred = credentials.Certificate(AUTHEN_ACCOUNT)
firebase_admin.initialize_app(cred)
db = firestore.client()

colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) 
          for j in range(10)]

detection_threshold = 0.1
model = YOLO(MODEL_PATH)

def addToDatabase(ss_id, obj_ids):
    try:
        new_doc = db.collection("TrafficData").document()
        print(new_doc.id)
        data = {
            "SS_ID": ss_id,
            "TF_COUNT_CAR": len(obj_ids['car']),
            "TF_COUNT_MOTOBIKE": len(obj_ids['bicycle']) + len(obj_ids['motocycle']),
            "TF_COUNT_OTHERS": len(obj_ids['bus']) + len(obj_ids['truck']) + len(obj_ids['other']),
            "TF_ID": new_doc.id,
            "TF_TIME": datetime.utcnow()

        }
        try:
            db.collection("TrafficData").document(new_doc.id).set(data)
            print("Sucessfully saved to database")
        except:
            print("Can't upload a new data")

    except:
        print("Can't create a new data")


def traffic_counting(video):
   
    obj_ids = {"person": [], 
                  "bicycle": [], 
                  "car": [], 
                  "motocycle": [], 
                  "bus": [], 
                  "truck": [], 
                  "other": []}

    cap = cv2.VideoCapture(video)
    ret, frame = cap.read()

    tracker = Tracker()
    while ret:
        results = model.predict(frame)

        for result in results:
            detections = []
            for r in result.boxes.data.tolist():
                x1, y1, x2, y2, score, class_id = r
                x1 = int(x1)
                x2 = int(x2)
                y1 = int(y1)
                y2 = int(y2)
                class_id = int(class_id)
                if score > detection_threshold:
                    detections.append([x1, y1, x2, y2, class_id, score])
                

            tracker.update(frame, detections)

            for track in tracker.tracks:
                bbox = track.bbox
                x1, y1, x2, y2 = bbox
                track_id = track.track_id
                class_id = track.class_id

                cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (compute_color_for_labels(class_id)), 3)
                label_name = ID2LABEL[class_id] if class_id in ID2LABEL.keys() else "other"
                if track_id not in obj_ids[label_name]:
                    obj_ids[label_name].append(track_id)

                cv2.putText(frame,f"{label_name}-{track_id}", 
                            (int(x1) + 5, int(y1) - 5), 
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA )
    
        # Count each type of traffic
        output_data = {key: len(value) for key, value in obj_ids.items()}
        df = pd.DataFrame(list(output_data.items()), columns=['Type', 'Number'])
       
        yield frame, df
        ret, frame = cap.read()
        
    
    cap.release()
    cv2.destroyAllWindows()
    video_path = video.replace("\\", "/")
    # addToDatabase(video_path.split("/")[-1][:-4], obj_ids)


# input_video = gr.Video(label="Input Video")
# output_video = gr.outputs.Video(label="Processing Video")
# output_data = gr.Dataframe(interactive=False, label="Traffic's Frequency")

# demo = gr.Interface(traffic_counting,
#                     inputs=input_video,
#                     outputs=[output_video, output_data],
#                     examples=[os.path.join('video', x) for x in os.listdir('video') if x != ".gitkeep"],
#                     allow_flagging='never'
#                     )
def traffic_detection(image):
    
    results = model.predict(image)
    detections = []
    obj_ids = {"person": [], 
                  "bicycle": [], 
                  "car": [], 
                  "motocycle": [], 
                  "bus": [], 
                  "truck": [], 
                  "other": []}

    for result in results:
        for r in result.boxes.data.tolist():
            x1, y1, x2, y2, score, class_id = r
            x1 = int(x1)
            x2 = int(x2)
            y1 = int(y1)
            y2 = int(y2)
            class_id = int(class_id)
            if score > detection_threshold:
                detections.append([x1, y1, x2, y2, class_id, score])
            cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (compute_color_for_labels(class_id)), 1)
            label_name = ID2LABEL[class_id] if class_id in ID2LABEL.keys() else "other"
            cv2.putText(image,f"{label_name}", 
                            (int(x1) + 5, int(y1) - 5), 
                            cv2.FONT_HERSHEY_SIMPLEX, 0.3,compute_color_for_labels(class_id), 1, cv2.LINE_AA )         
       
        # Count each type of traffic
        output_data = {key: len(value) for key, value in obj_ids.items()}
        df = pd.DataFrame(list(output_data.items()), columns=['Type', 'Number'])
        yield image, df

        
                
    

# Input is a image
input_image = gr.Image(label="Input Image")
output_image = gr.Image(type="filepath", label="Processing Image")
output_data = gr.Dataframe(interactive=False, label="Traffic's Frequency")
demo = gr.Interface(traffic_detection,
                    inputs=input_image,
                    outputs=[output_image, output_data],
                    examples=[os.path.join('image', x) for x in os.listdir('image') if x != ".gitkeep"],
                    allow_flagging='never'
                    )


if __name__ == "__main__":
    demo.queue()
    demo.launch(share= False)