FLUX.1-inpaint / app.py
MakiAi's picture
This PR adds the "Guidance Scale" parameter (#2)
e5bc4b8 verified
import torch
import spaces
import gradio as gr
from diffusers import FluxInpaintPipeline
import random
import numpy as np
MARKDOWN = """
# FLUX.1 Inpainting 🎨
Shoutout to [Black Forest Labs](https://huggingface.co./black-forest-labs) team for
creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos)
for taking it to the next level by enabling inpainting with the FLUX.
"""
MAX_SEED = np.iinfo(np.int32).max
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
@spaces.GPU()
def process(input_image_editor, uploaded_mask, input_text, strength, seed, randomize_seed, num_inference_steps, guidance_scale=3.5, progress=gr.Progress(track_tqdm=True)):
if not input_text:
raise gr.Error("Please enter a text prompt.")
image = input_image_editor['background']
if uploaded_mask is None:
mask_image = input_image_editor['layers'][0]
else:
mask_image = uploaded_mask
if not image:
raise gr.Error("Please upload an image.")
if not mask_image:
raise gr.Error("Please draw or upload a mask on the image.")
width, height = image.size
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=DEVICE).manual_seed(seed)
result = pipe(
prompt=input_text,
image=image,
mask_image=mask_image,
width=width,
height=height,
strength=strength,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
return result, mask_image, seed
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column(scale=1):
input_image_editor_component = gr.ImageEditor(
label='Image',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
input_text_component = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
with gr.Accordion("Advanced Settings", open=False):
strength_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.01,
label="Strength"
)
num_inference_steps = gr.Slider(
minimum=1,
maximum=100,
value=30,
step=1,
label="Number of inference steps"
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
seed_number = gr.Number(
label="Seed",
value=42,
precision=0
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Accordion("Upload a mask", open=False):
uploaded_mask_component = gr.Image(label="Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources=["upload"], type="pil")
submit_button_component = gr.Button(
value='Inpaint', variant='primary')
with gr.Column(scale=1):
output_image_component = gr.Image(
type='pil', image_mode='RGB', label='Generated image')
with gr.Accordion("Debug Info", open=False):
output_mask_component = gr.Image(
type='pil', image_mode='RGB', label='Input mask')
output_seed = gr.Number(label="Used Seed")
submit_button_component.click(
fn=process,
inputs=[
input_image_editor_component,
uploaded_mask_component,
input_text_component,
strength_slider,
seed_number,
randomize_seed,
num_inference_steps,
guidance_scale
],
outputs=[
output_image_component,
output_mask_component,
output_seed
]
)
demo.launch(debug=False, show_error=True)