mikonvergence's picture
Upload 4 files
8cc8f31 verified
import numpy as np
import math
import pandas as pd
import geopandas as gpd
from shapely.geometry import LineString, Polygon
from tqdm import tqdm
class Grid():
RADIUS_EQUATOR = 6378.137 # km
def __init__(self,dist,latitude_range=(-85,85),longitude_range=(-180,180),utm_definition='bottomleft'):
self.dist = dist
self.latitude_range = latitude_range
self.longitude_range = longitude_range
self.utm_definition = utm_definition
self.rows,self.lats = self.get_rows()
self.points, self.points_by_row = self.get_points()
def get_rows(self):
# Define set of latitudes to use, based on the grid distance
arc_pole_to_pole = math.pi * self.RADIUS_EQUATOR
num_divisions_in_hemisphere = math.ceil(arc_pole_to_pole / self.dist)
latitudes = np.linspace(-90, 90, num_divisions_in_hemisphere+1)[:-1]
latitudes = np.mod(latitudes, 180) - 90
# order should be from south to north
latitudes = np.sort(latitudes)
zeroth_row = np.searchsorted(latitudes,0)
# From 0U-NU and 1D-ND
rows = [None] * len(latitudes)
rows[zeroth_row:] = [f'{i}U' for i in range(len(latitudes)-zeroth_row)]
rows[:zeroth_row] = [f'{abs(i-zeroth_row)}D' for i in range(zeroth_row)]
# bound to range
idxs = (latitudes>=self.latitude_range[0]) * (latitudes<=self.latitude_range[1])
rows,latitudes = np.array(rows), np.array(latitudes)
rows,latitudes = rows[idxs],latitudes[idxs]
return rows,latitudes
def get_circumference_at_latitude(self,lat):
# Circumference of the cross-section of a sphere at a given latitude
radius_at_lat = self.RADIUS_EQUATOR * math.cos(lat * math.pi / 180)
circumference = 2 * math.pi * radius_at_lat
return circumference
def subdivide_circumference(self,lat,return_cols=False):
# Provide a list of longitudes that subdivide the circumference of the earth at a given latitude
# into equal parts as close as possible to dist
circumference = self.get_circumference_at_latitude(lat)
num_divisions = math.ceil(circumference / self.dist)
longitudes = np.linspace(-180,180, num_divisions+1)[:-1]
longitudes = np.mod(longitudes, 360) - 180
longitudes = np.sort(longitudes)
if return_cols:
cols = [None] * len(longitudes)
zeroth_idx = np.where(longitudes==0)[0][0]
cols[zeroth_idx:] = [f'{i}R' for i in range(len(longitudes)-zeroth_idx)]
cols[:zeroth_idx] = [f'{abs(i-zeroth_idx)}L' for i in range(zeroth_idx)]
return np.array(cols),np.array(longitudes)
return np.array(longitudes)
def get_points(self):
r_idx = 0
points_by_row = [None]*len(self.rows)
for r,lat in zip(self.rows,self.lats):
point_names,grid_row_names,grid_col_names,grid_row_idx,grid_col_idx,grid_lats,grid_lons,utm_zones,epsgs = [],[],[],[],[],[],[],[],[]
cols,lons = self.subdivide_circumference(lat,return_cols=True)
cols,lons = self.filter_longitude(cols,lons)
c_idx = 0
for c,lon in zip(cols,lons):
point_names.append(f'{r}_{c}')
grid_row_names.append(r)
grid_col_names.append(c)
grid_row_idx.append(r_idx)
grid_col_idx.append(c_idx)
grid_lats.append(lat)
grid_lons.append(lon)
if self.utm_definition == 'bottomleft':
utm_zones.append(get_utm_zone_from_latlng([lat,lon]))
elif self.utm_definition == 'center':
center_lat = lat + (1000*self.dist/2)/111_120
center_lon = lon + (1000*self.dist/2)/(111_120*math.cos(center_lat*math.pi/180))
utm_zones.append(get_utm_zone_from_latlng([center_lat,center_lon]))
else:
raise ValueError(f'Invalid utm_definition {self.utm_definition}')
epsgs.append(f'EPSG:{utm_zones[-1]}')
c_idx += 1
points_by_row[r_idx] = gpd.GeoDataFrame({
'name':point_names,
'row':grid_row_names,
'col':grid_col_names,
'row_idx':grid_row_idx,
'col_idx':grid_col_idx,
'utm_zone':utm_zones,
'epsg':epsgs
},geometry=gpd.points_from_xy(grid_lons,grid_lats))
r_idx += 1
points = gpd.GeoDataFrame(pd.concat(points_by_row))
# points.reset_index(inplace=True,drop=True)
return points, points_by_row
def group_points_by_row(self):
# Make list of different gdfs for each row
points_by_row = [None]*len(self.rows)
for i,row in enumerate(self.rows):
points_by_row[i] = self.points[self.points.row==row]
return points_by_row
def filter_longitude(self,cols,lons):
idxs = (lons>=self.longitude_range[0]) * (lons<=self.longitude_range[1])
cols,lons = cols[idxs],lons[idxs]
return cols,lons
def latlon2rowcol(self,lats,lons,return_idx=False):
"""
Convert latitude and longitude to row and column number from the grid
"""
# Always take bottom left corner of grid cell
rows = np.searchsorted(self.lats,lats)-1
# Get the possible points of the grid cells at the given latitude
possible_points = [self.points_by_row[row] for row in rows]
# For each point, find the rightmost point that is still to the left of the given longitude
cols = [poss_points.iloc[np.searchsorted(poss_points.geometry.x,lon)-1].col for poss_points,lon in zip(possible_points,lons)]
rows = self.rows[rows]
if return_idx:
# Get the table index for self.points with each row,col pair in rows, cols
idx = [self.points[(self.points.row==row) & (self.points.col==col)].index.values[0] for row,col in zip(rows,cols)]
return rows,cols,idx
return rows,cols
def rowcol2latlon(self,rows,cols):
point_geoms = [self.points.loc[(self.points.row==row) & (self.points.col==col),'geometry'].values[0] for row,col in zip(rows,cols)]
lats = [point.y for point in point_geoms]
lons = [point.x for point in point_geoms]
return lats,lons
def get_bounded_footprint(self,point,buffer_ratio=0):
# Gets the polygon footprint of the grid cell for a given point, bounded by the other grid points' cells.
# Grid point defined as bottom-left corner of polygon. Buffer ratio is the ratio of the grid cell's width/height to buffer by.
bottom,left = point.geometry.y,point.geometry.x
row = point.row
row_idx = point.row_idx
col_idx = point.col_idx
next_row_idx = row_idx+1
next_col_idx = col_idx+1
if next_row_idx >= len(self.lats): # If at top row, use difference between top and second-to-top row for height
height = (self.lats[row_idx] - self.lats[row_idx-1])
top = self.lats[row_idx] + height
else:
top = self.lats[next_row_idx]
max_col = len(self.points_by_row[row].col_idx)-1
if next_col_idx > max_col: # If at rightmost column, use difference between rightmost and second-to-rightmost column for width
width = (self.points_by_row[row].iloc[col_idx].geometry.x - self.points_by_row[row].iloc[col_idx-1].geometry.x)
right = self.points_by_row[row].iloc[col_idx].geometry.x + width
else:
right = self.points_by_row[row].iloc[next_col_idx].geometry.x
# Buffer the polygon by the ratio of the grid cell's width/height
width = right - left
height = top - bottom
buffer_horizontal = width * buffer_ratio
buffer_vertical = height * buffer_ratio
new_left = left - buffer_horizontal
new_right = right + buffer_horizontal
new_bottom = bottom - buffer_vertical
new_top = top + buffer_vertical
bbox = Polygon([(new_left,new_bottom),(new_left,new_top),(new_right,new_top),(new_right,new_bottom)])
return bbox
def get_utm_zone_from_latlng(latlng):
"""
Get the UTM ZONE from a latlng list.
Parameters
----------
latlng : List[Union[int, float]]
The latlng list to get the UTM ZONE from.
return_epsg : bool, optional
Whether or not to return the EPSG code instead of the WKT, by default False
Returns
-------
str
The WKT or EPSG code.
"""
assert isinstance(latlng, (list, np.ndarray)), "latlng must be in the form of a list."
zone = math.floor(((latlng[1] + 180) / 6) + 1)
n_or_s = "S" if latlng[0] < 0 else "N"
false_northing = "10000000" if n_or_s == "S" else "0"
central_meridian = str(zone * 6 - 183)
epsg = f"32{'7' if n_or_s == 'S' else '6'}{str(zone)}"
return epsg
if __name__ == '__main__':
import matplotlib.pyplot as plt
dist = 100
grid = Grid(dist,latitude_range=(10,70),longitude_range=(-30,60))
from pprint import pprint
test_lons = np.random.uniform(-20,50,size=(1000))
test_lats = np.random.uniform(12,68,size=(1000))
test_rows,test_cols = grid.latlon2rowcol(test_lats,test_lons)
test_lats2,test_lons2 = grid.rowcol2latlon(test_rows,test_cols)
print(test_lons[:10])
print(test_lats[:10])
print(test_rows[:10])
print(test_cols[:10])
# Make line segments from the points to their corresponding grid points
lines = []
for i in range(len(test_lats)):
lines.append([(test_lons[i],test_lats[i]),(test_lons2[i],test_lats2[i])])
lines = gpd.GeoDataFrame(geometry=gpd.GeoSeries([LineString(line) for line in lines]))
lines.to_file(f'testlines_{dist}km.geojson',driver='GeoJSON')
grid.points.to_file(f'testgrid_{dist}km.geojson',driver='GeoJSON')