mikonvergence's picture
Upload 4 files
8cc8f31 verified
raw
history blame
10 kB
import numpy as np
import math
import pandas as pd
import geopandas as gpd
from shapely.geometry import LineString, Polygon
from tqdm import tqdm
class Grid():
RADIUS_EQUATOR = 6378.137 # km
def __init__(self,dist,latitude_range=(-85,85),longitude_range=(-180,180),utm_definition='bottomleft'):
self.dist = dist
self.latitude_range = latitude_range
self.longitude_range = longitude_range
self.utm_definition = utm_definition
self.rows,self.lats = self.get_rows()
self.points, self.points_by_row = self.get_points()
def get_rows(self):
# Define set of latitudes to use, based on the grid distance
arc_pole_to_pole = math.pi * self.RADIUS_EQUATOR
num_divisions_in_hemisphere = math.ceil(arc_pole_to_pole / self.dist)
latitudes = np.linspace(-90, 90, num_divisions_in_hemisphere+1)[:-1]
latitudes = np.mod(latitudes, 180) - 90
# order should be from south to north
latitudes = np.sort(latitudes)
zeroth_row = np.searchsorted(latitudes,0)
# From 0U-NU and 1D-ND
rows = [None] * len(latitudes)
rows[zeroth_row:] = [f'{i}U' for i in range(len(latitudes)-zeroth_row)]
rows[:zeroth_row] = [f'{abs(i-zeroth_row)}D' for i in range(zeroth_row)]
# bound to range
idxs = (latitudes>=self.latitude_range[0]) * (latitudes<=self.latitude_range[1])
rows,latitudes = np.array(rows), np.array(latitudes)
rows,latitudes = rows[idxs],latitudes[idxs]
return rows,latitudes
def get_circumference_at_latitude(self,lat):
# Circumference of the cross-section of a sphere at a given latitude
radius_at_lat = self.RADIUS_EQUATOR * math.cos(lat * math.pi / 180)
circumference = 2 * math.pi * radius_at_lat
return circumference
def subdivide_circumference(self,lat,return_cols=False):
# Provide a list of longitudes that subdivide the circumference of the earth at a given latitude
# into equal parts as close as possible to dist
circumference = self.get_circumference_at_latitude(lat)
num_divisions = math.ceil(circumference / self.dist)
longitudes = np.linspace(-180,180, num_divisions+1)[:-1]
longitudes = np.mod(longitudes, 360) - 180
longitudes = np.sort(longitudes)
if return_cols:
cols = [None] * len(longitudes)
zeroth_idx = np.where(longitudes==0)[0][0]
cols[zeroth_idx:] = [f'{i}R' for i in range(len(longitudes)-zeroth_idx)]
cols[:zeroth_idx] = [f'{abs(i-zeroth_idx)}L' for i in range(zeroth_idx)]
return np.array(cols),np.array(longitudes)
return np.array(longitudes)
def get_points(self):
r_idx = 0
points_by_row = [None]*len(self.rows)
for r,lat in zip(self.rows,self.lats):
point_names,grid_row_names,grid_col_names,grid_row_idx,grid_col_idx,grid_lats,grid_lons,utm_zones,epsgs = [],[],[],[],[],[],[],[],[]
cols,lons = self.subdivide_circumference(lat,return_cols=True)
cols,lons = self.filter_longitude(cols,lons)
c_idx = 0
for c,lon in zip(cols,lons):
point_names.append(f'{r}_{c}')
grid_row_names.append(r)
grid_col_names.append(c)
grid_row_idx.append(r_idx)
grid_col_idx.append(c_idx)
grid_lats.append(lat)
grid_lons.append(lon)
if self.utm_definition == 'bottomleft':
utm_zones.append(get_utm_zone_from_latlng([lat,lon]))
elif self.utm_definition == 'center':
center_lat = lat + (1000*self.dist/2)/111_120
center_lon = lon + (1000*self.dist/2)/(111_120*math.cos(center_lat*math.pi/180))
utm_zones.append(get_utm_zone_from_latlng([center_lat,center_lon]))
else:
raise ValueError(f'Invalid utm_definition {self.utm_definition}')
epsgs.append(f'EPSG:{utm_zones[-1]}')
c_idx += 1
points_by_row[r_idx] = gpd.GeoDataFrame({
'name':point_names,
'row':grid_row_names,
'col':grid_col_names,
'row_idx':grid_row_idx,
'col_idx':grid_col_idx,
'utm_zone':utm_zones,
'epsg':epsgs
},geometry=gpd.points_from_xy(grid_lons,grid_lats))
r_idx += 1
points = gpd.GeoDataFrame(pd.concat(points_by_row))
# points.reset_index(inplace=True,drop=True)
return points, points_by_row
def group_points_by_row(self):
# Make list of different gdfs for each row
points_by_row = [None]*len(self.rows)
for i,row in enumerate(self.rows):
points_by_row[i] = self.points[self.points.row==row]
return points_by_row
def filter_longitude(self,cols,lons):
idxs = (lons>=self.longitude_range[0]) * (lons<=self.longitude_range[1])
cols,lons = cols[idxs],lons[idxs]
return cols,lons
def latlon2rowcol(self,lats,lons,return_idx=False):
"""
Convert latitude and longitude to row and column number from the grid
"""
# Always take bottom left corner of grid cell
rows = np.searchsorted(self.lats,lats)-1
# Get the possible points of the grid cells at the given latitude
possible_points = [self.points_by_row[row] for row in rows]
# For each point, find the rightmost point that is still to the left of the given longitude
cols = [poss_points.iloc[np.searchsorted(poss_points.geometry.x,lon)-1].col for poss_points,lon in zip(possible_points,lons)]
rows = self.rows[rows]
if return_idx:
# Get the table index for self.points with each row,col pair in rows, cols
idx = [self.points[(self.points.row==row) & (self.points.col==col)].index.values[0] for row,col in zip(rows,cols)]
return rows,cols,idx
return rows,cols
def rowcol2latlon(self,rows,cols):
point_geoms = [self.points.loc[(self.points.row==row) & (self.points.col==col),'geometry'].values[0] for row,col in zip(rows,cols)]
lats = [point.y for point in point_geoms]
lons = [point.x for point in point_geoms]
return lats,lons
def get_bounded_footprint(self,point,buffer_ratio=0):
# Gets the polygon footprint of the grid cell for a given point, bounded by the other grid points' cells.
# Grid point defined as bottom-left corner of polygon. Buffer ratio is the ratio of the grid cell's width/height to buffer by.
bottom,left = point.geometry.y,point.geometry.x
row = point.row
row_idx = point.row_idx
col_idx = point.col_idx
next_row_idx = row_idx+1
next_col_idx = col_idx+1
if next_row_idx >= len(self.lats): # If at top row, use difference between top and second-to-top row for height
height = (self.lats[row_idx] - self.lats[row_idx-1])
top = self.lats[row_idx] + height
else:
top = self.lats[next_row_idx]
max_col = len(self.points_by_row[row].col_idx)-1
if next_col_idx > max_col: # If at rightmost column, use difference between rightmost and second-to-rightmost column for width
width = (self.points_by_row[row].iloc[col_idx].geometry.x - self.points_by_row[row].iloc[col_idx-1].geometry.x)
right = self.points_by_row[row].iloc[col_idx].geometry.x + width
else:
right = self.points_by_row[row].iloc[next_col_idx].geometry.x
# Buffer the polygon by the ratio of the grid cell's width/height
width = right - left
height = top - bottom
buffer_horizontal = width * buffer_ratio
buffer_vertical = height * buffer_ratio
new_left = left - buffer_horizontal
new_right = right + buffer_horizontal
new_bottom = bottom - buffer_vertical
new_top = top + buffer_vertical
bbox = Polygon([(new_left,new_bottom),(new_left,new_top),(new_right,new_top),(new_right,new_bottom)])
return bbox
def get_utm_zone_from_latlng(latlng):
"""
Get the UTM ZONE from a latlng list.
Parameters
----------
latlng : List[Union[int, float]]
The latlng list to get the UTM ZONE from.
return_epsg : bool, optional
Whether or not to return the EPSG code instead of the WKT, by default False
Returns
-------
str
The WKT or EPSG code.
"""
assert isinstance(latlng, (list, np.ndarray)), "latlng must be in the form of a list."
zone = math.floor(((latlng[1] + 180) / 6) + 1)
n_or_s = "S" if latlng[0] < 0 else "N"
false_northing = "10000000" if n_or_s == "S" else "0"
central_meridian = str(zone * 6 - 183)
epsg = f"32{'7' if n_or_s == 'S' else '6'}{str(zone)}"
return epsg
if __name__ == '__main__':
import matplotlib.pyplot as plt
dist = 100
grid = Grid(dist,latitude_range=(10,70),longitude_range=(-30,60))
from pprint import pprint
test_lons = np.random.uniform(-20,50,size=(1000))
test_lats = np.random.uniform(12,68,size=(1000))
test_rows,test_cols = grid.latlon2rowcol(test_lats,test_lons)
test_lats2,test_lons2 = grid.rowcol2latlon(test_rows,test_cols)
print(test_lons[:10])
print(test_lats[:10])
print(test_rows[:10])
print(test_cols[:10])
# Make line segments from the points to their corresponding grid points
lines = []
for i in range(len(test_lats)):
lines.append([(test_lons[i],test_lats[i]),(test_lons2[i],test_lats2[i])])
lines = gpd.GeoDataFrame(geometry=gpd.GeoSeries([LineString(line) for line in lines]))
lines.to_file(f'testlines_{dist}km.geojson',driver='GeoJSON')
grid.points.to_file(f'testgrid_{dist}km.geojson',driver='GeoJSON')