File size: 5,577 Bytes
8ec1357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import base64
import io
import os
import shutil
import time
import uuid
from pathlib import Path

import gradio as gr
from modelscope import AutoModel, AutoTokenizer

UPLOAD_FOLDER = "./uploads"
RESULTS_FOLDER = "./results"


tokenizer = AutoTokenizer.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True)
model = AutoModel.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True, low_cpu_mem_usage=True, device_map="cuda", use_safetensors=True)
model = model.eval().cuda()

for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
    if not os.path.exists(folder):
        os.makedirs(folder)


def image_to_base64(image):
    buffered = io.BytesIO()
    image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode()


def run_GOT(image, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""):
    unique_id = str(uuid.uuid4())
    image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
    result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html")

    shutil.copy(image, image_path)

    try:
        if got_mode == "plain texts OCR":
            res = model.chat(tokenizer, image_path, ocr_type="ocr")
            return res, None
        elif got_mode == "format texts OCR":
            res = model.chat(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path)
        elif got_mode == "plain multi-crop OCR":
            res = model.chat_crop(tokenizer, image_path, ocr_type="ocr")
            return res, None
        elif got_mode == "format multi-crop OCR":
            res = model.chat_crop(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path)
        elif got_mode == "plain fine-grained OCR":
            res = model.chat(tokenizer, image_path, ocr_type="ocr", ocr_box=ocr_box, ocr_color=ocr_color)
            return res, None
        elif got_mode == "format fine-grained OCR":
            res = model.chat(tokenizer, image_path, ocr_type="format", ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path)

        # res_markdown = f"$$ {res} $$"
        res_markdown = res

        if "format" in got_mode and os.path.exists(result_path):
            with open(result_path, "r") as f:
                html_content = f.read()
            encoded_html = base64.b64encode(html_content.encode("utf-8")).decode("utf-8")
            iframe_src = f"data:text/html;base64,{encoded_html}"
            iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
            download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>'
            return res_markdown, f"{download_link}<br>{iframe}"
        else:
            return res_markdown, None
    except Exception as e:
        return f"Error: {str(e)}", None
    finally:
        if os.path.exists(image_path):
            os.remove(image_path)


def task_update(task):
    if "fine-grained" in task:
        return [
            gr.update(visible=True),
            gr.update(visible=False),
            gr.update(visible=False),
        ]
    else:
        return [
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
        ]


def fine_grained_update(task):
    if task == "box":
        return [
            gr.update(visible=False, value=""),
            gr.update(visible=True),
        ]
    elif task == "color":
        return [
            gr.update(visible=True),
            gr.update(visible=False, value=""),
        ]


def cleanup_old_files():
    current_time = time.time()
    for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
        for file_path in Path(folder).glob("*"):
            if current_time - file_path.stat().st_mtime > 3600:  # 1 hour
                file_path.unlink()


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="filepath", label="上传图片")
            task_dropdown = gr.Dropdown(
                choices=[
                    "plain texts OCR",
                    "format texts OCR",
                    "plain multi-crop OCR",
                    "format multi-crop OCR",
                    "plain fine-grained OCR",
                    "format fine-grained OCR",
                ],
                label="选择GOT模式",
                value="plain texts OCR",
            )
            fine_grained_dropdown = gr.Dropdown(choices=["box", "color"], label="fine-grained type", visible=False)
            color_dropdown = gr.Dropdown(choices=["red", "green", "blue"], label="color list", visible=False)
            box_input = gr.Textbox(label="input box: [x1,y1,x2,y2]", placeholder="e.g., [0,0,100,100]", visible=False)
            submit_button = gr.Button("Submit")

        with gr.Column():
            ocr_result = gr.Textbox(label="GOT output")

    with gr.Column():
        gr.Markdown("**如果选择带格式的模式,mathpix结果将自动呈现如下:**")
        html_result = gr.HTML(label="rendered html", show_label=True)

    task_dropdown.change(task_update, inputs=[task_dropdown], outputs=[fine_grained_dropdown, color_dropdown, box_input])
    fine_grained_dropdown.change(fine_grained_update, inputs=[fine_grained_dropdown], outputs=[color_dropdown, box_input])

    submit_button.click(run_GOT, inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input], outputs=[ocr_result, html_result])

if __name__ == "__main__":
    cleanup_old_files()
    demo.launch()