Spaces:
Running
Running
File size: 5,577 Bytes
8ec1357 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import base64
import io
import os
import shutil
import time
import uuid
from pathlib import Path
import gradio as gr
from modelscope import AutoModel, AutoTokenizer
UPLOAD_FOLDER = "./uploads"
RESULTS_FOLDER = "./results"
tokenizer = AutoTokenizer.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True)
model = AutoModel.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True, low_cpu_mem_usage=True, device_map="cuda", use_safetensors=True)
model = model.eval().cuda()
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
if not os.path.exists(folder):
os.makedirs(folder)
def image_to_base64(image):
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def run_GOT(image, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""):
unique_id = str(uuid.uuid4())
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html")
shutil.copy(image, image_path)
try:
if got_mode == "plain texts OCR":
res = model.chat(tokenizer, image_path, ocr_type="ocr")
return res, None
elif got_mode == "format texts OCR":
res = model.chat(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path)
elif got_mode == "plain multi-crop OCR":
res = model.chat_crop(tokenizer, image_path, ocr_type="ocr")
return res, None
elif got_mode == "format multi-crop OCR":
res = model.chat_crop(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path)
elif got_mode == "plain fine-grained OCR":
res = model.chat(tokenizer, image_path, ocr_type="ocr", ocr_box=ocr_box, ocr_color=ocr_color)
return res, None
elif got_mode == "format fine-grained OCR":
res = model.chat(tokenizer, image_path, ocr_type="format", ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path)
# res_markdown = f"$$ {res} $$"
res_markdown = res
if "format" in got_mode and os.path.exists(result_path):
with open(result_path, "r") as f:
html_content = f.read()
encoded_html = base64.b64encode(html_content.encode("utf-8")).decode("utf-8")
iframe_src = f"data:text/html;base64,{encoded_html}"
iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>'
return res_markdown, f"{download_link}<br>{iframe}"
else:
return res_markdown, None
except Exception as e:
return f"Error: {str(e)}", None
finally:
if os.path.exists(image_path):
os.remove(image_path)
def task_update(task):
if "fine-grained" in task:
return [
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
]
else:
return [
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
]
def fine_grained_update(task):
if task == "box":
return [
gr.update(visible=False, value=""),
gr.update(visible=True),
]
elif task == "color":
return [
gr.update(visible=True),
gr.update(visible=False, value=""),
]
def cleanup_old_files():
current_time = time.time()
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
for file_path in Path(folder).glob("*"):
if current_time - file_path.stat().st_mtime > 3600: # 1 hour
file_path.unlink()
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="上传图片")
task_dropdown = gr.Dropdown(
choices=[
"plain texts OCR",
"format texts OCR",
"plain multi-crop OCR",
"format multi-crop OCR",
"plain fine-grained OCR",
"format fine-grained OCR",
],
label="选择GOT模式",
value="plain texts OCR",
)
fine_grained_dropdown = gr.Dropdown(choices=["box", "color"], label="fine-grained type", visible=False)
color_dropdown = gr.Dropdown(choices=["red", "green", "blue"], label="color list", visible=False)
box_input = gr.Textbox(label="input box: [x1,y1,x2,y2]", placeholder="e.g., [0,0,100,100]", visible=False)
submit_button = gr.Button("Submit")
with gr.Column():
ocr_result = gr.Textbox(label="GOT output")
with gr.Column():
gr.Markdown("**如果选择带格式的模式,mathpix结果将自动呈现如下:**")
html_result = gr.HTML(label="rendered html", show_label=True)
task_dropdown.change(task_update, inputs=[task_dropdown], outputs=[fine_grained_dropdown, color_dropdown, box_input])
fine_grained_dropdown.change(fine_grained_update, inputs=[fine_grained_dropdown], outputs=[color_dropdown, box_input])
submit_button.click(run_GOT, inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input], outputs=[ocr_result, html_result])
if __name__ == "__main__":
cleanup_old_files()
demo.launch()
|