Spaces:
Runtime error
Runtime error
import ast | |
import random | |
import uuid | |
from typing import Dict, List, Union | |
import argilla as rg | |
import gradio as gr | |
import pandas as pd | |
from datasets import Dataset | |
from distilabel.distiset import Distiset | |
from huggingface_hub import HfApi | |
from synthetic_dataset_generator.apps.base import ( | |
combine_datasets, | |
hide_success_message, | |
push_pipeline_code_to_hub, | |
show_success_message, | |
test_max_num_rows, | |
validate_argilla_user_workspace_dataset, | |
validate_push_to_hub, | |
) | |
from synthetic_dataset_generator.constants import ( | |
DEFAULT_BATCH_SIZE, | |
MODEL, | |
SFT_AVAILABLE, | |
) | |
from synthetic_dataset_generator.pipelines.chat import ( | |
DEFAULT_DATASET_DESCRIPTIONS, | |
generate_pipeline_code, | |
get_magpie_generator, | |
get_prompt_generator, | |
get_prompt_rewriter, | |
get_response_generator, | |
) | |
from synthetic_dataset_generator.pipelines.embeddings import ( | |
get_embeddings, | |
get_sentence_embedding_dimensions, | |
) | |
from synthetic_dataset_generator.utils import ( | |
get_argilla_client, | |
get_org_dropdown, | |
swap_visibility, | |
) | |
def convert_dataframe_messages(dataframe: pd.DataFrame) -> pd.DataFrame: | |
def convert_to_list_of_dicts(messages: str) -> List[Dict[str, str]]: | |
return ast.literal_eval( | |
messages.replace("'user'}", "'user'},") | |
.replace("'system'}", "'system'},") | |
.replace("'assistant'}", "'assistant'},") | |
) | |
if "messages" in dataframe.columns: | |
dataframe["messages"] = dataframe["messages"].apply( | |
lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x | |
) | |
return dataframe | |
def generate_system_prompt(dataset_description, progress=gr.Progress()): | |
progress(0.0, desc="Starting") | |
progress(0.3, desc="Initializing") | |
generate_description = get_prompt_generator() | |
progress(0.7, desc="Generating") | |
result = next( | |
generate_description.process( | |
[ | |
{ | |
"instruction": dataset_description, | |
} | |
] | |
) | |
)[0]["generation"] | |
progress(1.0, desc="Prompt generated") | |
return result | |
def generate_sample_dataset(system_prompt, num_turns, progress=gr.Progress()): | |
dataframe = generate_dataset( | |
system_prompt=system_prompt, | |
num_turns=num_turns, | |
num_rows=10, | |
progress=progress, | |
is_sample=True, | |
) | |
return dataframe | |
def _get_dataframe(): | |
return gr.Dataframe( | |
headers=["prompt", "completion"], | |
wrap=True, | |
interactive=False, | |
) | |
def generate_dataset( | |
system_prompt: str, | |
num_turns: int = 1, | |
num_rows: int = 10, | |
temperature: float = 0.9, | |
is_sample: bool = False, | |
progress=gr.Progress(), | |
) -> pd.DataFrame: | |
num_rows = test_max_num_rows(num_rows) | |
progress(0.0, desc="(1/2) Generating instructions") | |
prompt_rewriter = get_prompt_rewriter() | |
magpie_generator = get_magpie_generator( | |
system_prompt, num_turns, temperature, is_sample | |
) | |
response_generator = get_response_generator( | |
system_prompt, num_turns, temperature, is_sample | |
) | |
total_steps: int = num_rows * 2 | |
batch_size = DEFAULT_BATCH_SIZE | |
# create prompt rewrites | |
inputs = [ | |
{ | |
"instruction": f"Rewrite this prompt keeping the same structure but highlighting different aspects of the original without adding anything new. Original prompt: {system_prompt} Rewritten prompt: " | |
} | |
for i in range(int(num_rows / 50)) | |
] | |
batch = list(prompt_rewriter.process(inputs=inputs)) | |
prompt_rewrites = [entry["generation"] for entry in batch[0]] + [system_prompt] | |
# create instructions | |
n_processed = 0 | |
magpie_results = [] | |
while n_processed < num_rows: | |
progress( | |
0.5 * n_processed / num_rows, | |
total=total_steps, | |
desc="(1/2) Generating instructions", | |
) | |
remaining_rows = num_rows - n_processed | |
batch_size = min(batch_size, remaining_rows) | |
rewritten_system_prompt = random.choice(prompt_rewrites) | |
inputs = [{"system_prompt": rewritten_system_prompt} for _ in range(batch_size)] | |
batch = list(magpie_generator.process(inputs=inputs)) | |
magpie_results.extend(batch[0]) | |
n_processed += batch_size | |
progress(0.5, desc="(1/2) Generating instructions") | |
# generate responses | |
n_processed = 0 | |
response_results = [] | |
if num_turns == 1: | |
while n_processed < num_rows: | |
progress( | |
0.5 + 0.5 * n_processed / num_rows, | |
total=total_steps, | |
desc="(2/2) Generating responses", | |
) | |
batch = magpie_results[n_processed : n_processed + batch_size] | |
responses = list(response_generator.process(inputs=batch)) | |
response_results.extend(responses[0]) | |
n_processed += batch_size | |
for result in response_results: | |
result["prompt"] = result["instruction"] | |
result["completion"] = result["generation"] | |
result["system_prompt"] = system_prompt | |
else: | |
for result in magpie_results: | |
result["conversation"].insert( | |
0, {"role": "system", "content": system_prompt} | |
) | |
result["messages"] = result["conversation"] | |
while n_processed < num_rows: | |
progress( | |
0.5 + 0.5 * n_processed / num_rows, | |
total=total_steps, | |
desc="(2/2) Generating responses", | |
) | |
batch = magpie_results[n_processed : n_processed + batch_size] | |
responses = list(response_generator.process(inputs=batch)) | |
response_results.extend(responses[0]) | |
n_processed += batch_size | |
for result in response_results: | |
result["messages"].append( | |
{"role": "assistant", "content": result["generation"]} | |
) | |
progress( | |
1, | |
total=total_steps, | |
desc="(2/2) Creating dataset", | |
) | |
# create distiset | |
distiset_results = [] | |
for result in response_results: | |
record = {} | |
for relevant_keys in [ | |
"messages", | |
"prompt", | |
"completion", | |
"model_name", | |
"system_prompt", | |
]: | |
if relevant_keys in result: | |
record[relevant_keys] = result[relevant_keys] | |
distiset_results.append(record) | |
distiset = Distiset( | |
{ | |
"default": Dataset.from_list(distiset_results), | |
} | |
) | |
# If not pushing to hub generate the dataset directly | |
distiset = distiset["default"] | |
if num_turns == 1: | |
outputs = distiset.to_pandas()[["prompt", "completion", "system_prompt"]] | |
else: | |
outputs = distiset.to_pandas()[["messages"]] | |
dataframe = pd.DataFrame(outputs) | |
progress(1.0, desc="Dataset generation completed") | |
return dataframe | |
def push_dataset_to_hub( | |
dataframe: pd.DataFrame, | |
org_name: str, | |
repo_name: str, | |
oauth_token: Union[gr.OAuthToken, None], | |
private: bool, | |
pipeline_code: str, | |
progress=gr.Progress(), | |
): | |
progress(0.0, desc="Validating") | |
repo_id = validate_push_to_hub(org_name, repo_name) | |
progress(0.3, desc="Converting") | |
original_dataframe = dataframe.copy(deep=True) | |
dataframe = convert_dataframe_messages(dataframe) | |
progress(0.7, desc="Creating dataset") | |
dataset = Dataset.from_pandas(dataframe) | |
dataset = combine_datasets(repo_id, dataset) | |
progress(0.9, desc="Pushing dataset") | |
distiset = Distiset({"default": dataset}) | |
distiset.push_to_hub( | |
repo_id=repo_id, | |
private=private, | |
include_script=False, | |
token=oauth_token.token, | |
create_pr=False, | |
) | |
push_pipeline_code_to_hub(pipeline_code, org_name, repo_name, oauth_token) | |
progress(1.0, desc="Dataset pushed") | |
return original_dataframe | |
def push_dataset( | |
org_name: str, | |
repo_name: str, | |
system_prompt: str, | |
num_turns: int = 1, | |
num_rows: int = 10, | |
private: bool = False, | |
temperature: float = 0.9, | |
pipeline_code: str = "", | |
oauth_token: Union[gr.OAuthToken, None] = None, | |
progress=gr.Progress(), | |
) -> pd.DataFrame: | |
dataframe = generate_dataset( | |
system_prompt=system_prompt, | |
num_turns=num_turns, | |
num_rows=num_rows, | |
temperature=temperature, | |
) | |
push_dataset_to_hub( | |
dataframe, org_name, repo_name, oauth_token, private, pipeline_code | |
) | |
try: | |
progress(0.1, desc="Setting up user and workspace") | |
hf_user = HfApi().whoami(token=oauth_token.token)["name"] | |
client = get_argilla_client() | |
if client is None: | |
return "" | |
if "messages" in dataframe.columns: | |
settings = rg.Settings( | |
fields=[ | |
rg.ChatField( | |
name="messages", | |
description="The messages in the conversation", | |
title="Messages", | |
), | |
], | |
questions=[ | |
rg.RatingQuestion( | |
name="rating", | |
title="Rating", | |
description="The rating of the conversation", | |
values=list(range(1, 6)), | |
), | |
], | |
metadata=[ | |
rg.IntegerMetadataProperty( | |
name="user_message_length", title="User Message Length" | |
), | |
rg.IntegerMetadataProperty( | |
name="assistant_message_length", | |
title="Assistant Message Length", | |
), | |
], | |
vectors=[ | |
rg.VectorField( | |
name="messages_embeddings", | |
dimensions=get_sentence_embedding_dimensions(), | |
) | |
], | |
guidelines="Please review the conversation and provide a score for the assistant's response.", | |
) | |
dataframe["user_message_length"] = dataframe["messages"].apply( | |
lambda x: sum([len(y["content"]) for y in x if y["role"] == "user"]) | |
) | |
dataframe["assistant_message_length"] = dataframe["messages"].apply( | |
lambda x: sum( | |
[len(y["content"]) for y in x if y["role"] == "assistant"] | |
) | |
) | |
dataframe["messages_embeddings"] = get_embeddings( | |
dataframe["messages"].apply( | |
lambda x: " ".join([y["content"] for y in x]) | |
) | |
) | |
else: | |
settings = rg.Settings( | |
fields=[ | |
rg.TextField( | |
name="system_prompt", | |
title="System Prompt", | |
description="The system prompt used for the conversation", | |
required=False, | |
), | |
rg.TextField( | |
name="prompt", | |
title="Prompt", | |
description="The prompt used for the conversation", | |
), | |
rg.TextField( | |
name="completion", | |
title="Completion", | |
description="The completion from the assistant", | |
), | |
], | |
questions=[ | |
rg.RatingQuestion( | |
name="rating", | |
title="Rating", | |
description="The rating of the conversation", | |
values=list(range(1, 6)), | |
), | |
], | |
metadata=[ | |
rg.IntegerMetadataProperty( | |
name="prompt_length", title="Prompt Length" | |
), | |
rg.IntegerMetadataProperty( | |
name="completion_length", title="Completion Length" | |
), | |
], | |
vectors=[ | |
rg.VectorField( | |
name="prompt_embeddings", | |
dimensions=get_sentence_embedding_dimensions(), | |
) | |
], | |
guidelines="Please review the conversation and correct the prompt and completion where needed.", | |
) | |
dataframe["prompt_length"] = dataframe["prompt"].apply(len) | |
dataframe["completion_length"] = dataframe["completion"].apply(len) | |
dataframe["prompt_embeddings"] = get_embeddings(dataframe["prompt"]) | |
progress(0.5, desc="Creating dataset") | |
rg_dataset = client.datasets(name=repo_name, workspace=hf_user) | |
if rg_dataset is None: | |
rg_dataset = rg.Dataset( | |
name=repo_name, | |
workspace=hf_user, | |
settings=settings, | |
client=client, | |
) | |
rg_dataset = rg_dataset.create() | |
progress(0.7, desc="Pushing dataset to Argilla") | |
hf_dataset = Dataset.from_pandas(dataframe) | |
rg_dataset.records.log(records=hf_dataset) | |
progress(1.0, desc="Dataset pushed to Argilla") | |
except Exception as e: | |
raise gr.Error(f"Error pushing dataset to Argilla: {e}") | |
return "" | |
def show_pipeline_code_visibility(): | |
return {pipeline_code_ui: gr.Accordion(visible=True)} | |
def hide_pipeline_code_visibility(): | |
return {pipeline_code_ui: gr.Accordion(visible=False)} | |
###################### | |
# Gradio UI | |
###################### | |
with gr.Blocks() as app: | |
with gr.Column() as main_ui: | |
if not SFT_AVAILABLE: | |
gr.Markdown( | |
value=f"## Supervised Fine-Tuning is not available for the {MODEL} model. Use Hugging Face Llama3 or Qwen2 models." | |
) | |
else: | |
gr.Markdown(value="## 1. Describe the dataset you want") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
dataset_description = gr.Textbox( | |
label="Dataset description", | |
placeholder="Give a precise description of your desired dataset.", | |
) | |
with gr.Row(): | |
clear_btn_part = gr.Button( | |
"Clear", | |
variant="secondary", | |
) | |
load_btn = gr.Button( | |
"Create", | |
variant="primary", | |
) | |
with gr.Column(scale=3): | |
examples = gr.Examples( | |
examples=DEFAULT_DATASET_DESCRIPTIONS, | |
inputs=[dataset_description], | |
cache_examples=False, | |
label="Examples", | |
) | |
gr.HTML(value="<hr>") | |
gr.Markdown(value="## 2. Configure your dataset") | |
with gr.Row(equal_height=False): | |
with gr.Column(scale=2): | |
system_prompt = gr.Textbox( | |
label="System prompt", | |
placeholder="You are a helpful assistant.", | |
) | |
num_turns = gr.Number( | |
value=1, | |
label="Number of turns in the conversation", | |
minimum=1, | |
maximum=4, | |
step=1, | |
interactive=True, | |
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).", | |
) | |
with gr.Row(): | |
clear_btn_full = gr.Button( | |
"Clear", | |
variant="secondary", | |
) | |
btn_apply_to_sample_dataset = gr.Button( | |
"Save", variant="primary" | |
) | |
with gr.Column(scale=3): | |
dataframe = _get_dataframe() | |
gr.HTML(value="<hr>") | |
gr.Markdown(value="## 3. Generate your dataset") | |
with gr.Row(equal_height=False): | |
with gr.Column(scale=2): | |
org_name = get_org_dropdown() | |
repo_name = gr.Textbox( | |
label="Repo name", | |
placeholder="dataset_name", | |
value=f"my-distiset-{str(uuid.uuid4())[:8]}", | |
interactive=True, | |
) | |
num_rows = gr.Number( | |
label="Number of rows", | |
value=10, | |
interactive=True, | |
scale=1, | |
) | |
temperature = gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=1, | |
value=0.9, | |
step=0.1, | |
interactive=True, | |
) | |
private = gr.Checkbox( | |
label="Private dataset", | |
value=False, | |
interactive=True, | |
scale=1, | |
) | |
btn_push_to_hub = gr.Button( | |
"Push to Hub", variant="primary", scale=2 | |
) | |
with gr.Column(scale=3): | |
success_message = gr.Markdown( | |
visible=True, | |
min_height=100, # don't remove this otherwise progress is not visible | |
) | |
with gr.Accordion( | |
"Customize your pipeline with distilabel", | |
open=False, | |
visible=False, | |
) as pipeline_code_ui: | |
code = generate_pipeline_code( | |
system_prompt=system_prompt.value, | |
num_turns=num_turns.value, | |
num_rows=num_rows.value, | |
temperature=temperature.value, | |
) | |
pipeline_code = gr.Code( | |
value=code, | |
language="python", | |
label="Distilabel Pipeline Code", | |
) | |
load_btn.click( | |
fn=generate_system_prompt, | |
inputs=[dataset_description], | |
outputs=[system_prompt], | |
show_progress=True, | |
).then( | |
fn=generate_sample_dataset, | |
inputs=[system_prompt, num_turns], | |
outputs=[dataframe], | |
show_progress=True, | |
) | |
btn_apply_to_sample_dataset.click( | |
fn=generate_sample_dataset, | |
inputs=[system_prompt, num_turns], | |
outputs=[dataframe], | |
show_progress=True, | |
) | |
btn_push_to_hub.click( | |
fn=validate_argilla_user_workspace_dataset, | |
inputs=[repo_name], | |
outputs=[success_message], | |
show_progress=True, | |
).then( | |
fn=validate_push_to_hub, | |
inputs=[org_name, repo_name], | |
outputs=[success_message], | |
show_progress=True, | |
).success( | |
fn=hide_success_message, | |
outputs=[success_message], | |
show_progress=True, | |
).success( | |
fn=hide_pipeline_code_visibility, | |
inputs=[], | |
outputs=[pipeline_code_ui], | |
show_progress=True, | |
).success( | |
fn=push_dataset, | |
inputs=[ | |
org_name, | |
repo_name, | |
system_prompt, | |
num_turns, | |
num_rows, | |
private, | |
temperature, | |
pipeline_code, | |
], | |
outputs=[success_message], | |
show_progress=True, | |
).success( | |
fn=show_success_message, | |
inputs=[org_name, repo_name], | |
outputs=[success_message], | |
).success( | |
fn=generate_pipeline_code, | |
inputs=[system_prompt, num_turns, num_rows, temperature], | |
outputs=[pipeline_code], | |
).success( | |
fn=show_pipeline_code_visibility, | |
inputs=[], | |
outputs=[pipeline_code_ui], | |
) | |
gr.on( | |
triggers=[clear_btn_part.click, clear_btn_full.click], | |
fn=lambda _: ("", "", 1, _get_dataframe()), | |
inputs=[dataframe], | |
outputs=[dataset_description, system_prompt, num_turns, dataframe], | |
) | |
app.load(fn=swap_visibility, outputs=main_ui) | |
app.load(fn=get_org_dropdown, outputs=[org_name]) | |