import os # os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" import spaces import gc from functools import partial import gradio as gr import torch from speechbrain.inference.interfaces import Pretrained, foreign_class from transformers import T5Tokenizer, T5ForConditionalGeneration import librosa import whisper_timestamped as whisper from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, Wav2Vec2ForCTC, AutoProcessor from speechbrain.inference.VAD import VAD device = torch.device("cuda" if torch.cuda.is_available() else "cpu") torch.backends.cuda.matmul.allow_tf32 = True # Load the VAD model vad_model = VAD.from_hparams( source="speechbrain/vad-crdnn-libriparty", savedir="vad_model", ) def clean_up_memory(): gc.collect() torch.cuda.empty_cache() @spaces.GPU(duration=15) def recap_sentence(string): # Restore capitalization and punctuation using the model inputs = recap_tokenizer(["restore capitalization and punctuation: " + string], return_tensors="pt", padding=True).to(device) outputs = recap_model.generate(**inputs, max_length=768, num_beams=5, early_stopping=True).squeeze(0) recap_result = recap_tokenizer.decode(outputs, skip_special_tokens=True) return recap_result @spaces.GPU(duration=30) def return_prediction_w2v2_mic(mic=None, vad_model=vad_model, device=device): if mic is not None: download_path = mic.split(".")[0] + ".txt" w2v2_result = w2v2_classifier.classify_file_w2v2(mic, vad_model, device) else: recap_result = "" w2v2_result = "" download_path = "empty.txt" with open(download_path, "w") as f: f.write(recap_result) yield recap_result, download_path recap_result = "" prev_segment = "" prev_segment_len = 0 for k, segment in enumerate(w2v2_result): if prev_segment == "": recap_segment = recap_sentence(segment) else: prev_segment_len = len(prev_segment.split()) recap_segment = recap_sentence(prev_segment + " " + segment) # remove prev_segment from the beginning of the recap_result recap_segment = recap_segment.split() recap_segment = recap_segment[prev_segment_len:] recap_segment = " ".join(recap_segment) prev_segment = segment[0] recap_result += recap_segment + " " # If the letter after punct is small, recap it for i, letter in enumerate(recap_result): if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower(): recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:] clean_up_memory() with open(download_path, "w") as f: f.write(recap_result) yield recap_result, download_path @spaces.GPU(duration=30) def return_prediction_w2v2_file(file=None, vad_model=vad_model, device=device): if file is not None: download_path = file.split(".")[0] + ".txt" w2v2_result = w2v2_classifier.classify_file_w2v2(file, vad_model, device) else: recap_result = "" w2v2_result = "" download_path = "empty.txt" with open(download_path, "w") as f: f.write(recap_result) yield recap_result, download_path recap_result = "" prev_segment = "" prev_segment_len = 0 for k, segment in enumerate(w2v2_result): if prev_segment == "": recap_segment= recap_sentence(segment) else: prev_segment_len = len(prev_segment.split()) recap_segment = recap_sentence(prev_segment + " " + segment) # remove prev_segment from the beginning of the recap_result recap_segment = recap_segment.split() recap_segment = recap_segment[prev_segment_len:] recap_segment = " ".join(recap_segment) prev_segment = segment[0] recap_result += recap_segment + " " # If the letter after punct is small, recap it for i, letter in enumerate(recap_result): if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower(): recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:] clean_up_memory() with open(download_path, "w") as f: f.write(recap_result) yield recap_result, download_path # Create a partial function with the device pre-applied return_prediction_w2v2_mic_with_device = partial(return_prediction_w2v2_mic, vad_model=vad_model, device=device) return_prediction_w2v2_file_with_device = partial(return_prediction_w2v2_file, vad_model=vad_model, device=device) # Load the ASR models w2v2_classifier = foreign_class(source="Macedonian-ASR/buki-wav2vec2-2.0", pymodule_file="custom_interface_app.py", classname="ASR") w2v2_classifier = w2v2_classifier.to(device) w2v2_classifier.eval() # Load the T5 tokenizer and model for restoring capitalization recap_model_name = "Macedonian-ASR/mt5-restore-capitalization-macedonian" recap_tokenizer = T5Tokenizer.from_pretrained(recap_model_name) recap_model = T5ForConditionalGeneration.from_pretrained(recap_model_name, torch_dtype=torch.float16) recap_model.to(device) recap_model.eval() mic_transcribe_wav2vec2 = gr.Interface( fn=return_prediction_w2v2_mic_with_device, inputs=gr.Audio(sources="microphone", type="filepath"), outputs=[gr.Textbox(label="Транскрипција"), gr.File(label="Зачувај го транскриптот", file_count="single")], allow_flagging="never", live=True ) file_transcribe_wav2vec2 = gr.Interface( fn=return_prediction_w2v2_file_with_device, inputs=gr.Audio(sources="upload", type="filepath"), outputs=[gr.Textbox(label="Транскрипција"), gr.File(label="Зачувај го транскриптот", file_count="single")], allow_flagging="never", live=True ) project_description_header = '''
''' project_description_footer = ''' ''' css = """ .gradio-container { background-color: #f3f3f3 !important; display: flex; flex-direction: column; } .custom-markdown p, .custom-markdown li, .custom-markdown h2, .custom-markdown a, .custom-markdown strong { font-size: 15px !important; font-family: Arial, sans-serif !important; color: black !important; /* Ensure text is black */ } button { color: orange !important; } .header { order: 1; margin-bottom: 20px; } .main-content { order: 2; } .footer { order: 3; margin-top: 20px; } .footer h2, .footer li, strong { color: black !important; /* Ensure footer text is also black */ } .header h2, .header h4, .header li, strong { color: black !important; /* Ensure footer text is also black */ } """ transcriber_app = gr.Blocks(css=css, delete_cache=(60, 120)) with transcriber_app: state = gr.State() # gr.HTML('') gr.HTML(project_description_header) gr.TabbedInterface( [mic_transcribe_wav2vec2, file_transcribe_wav2vec2], ["Буки-w2v2 транскрипција од микрофон", "Буки-w2v2 транскрипција од фајл"], ) gr.HTML(project_description_footer) state = gr.State(value=[], delete_callback=lambda v: print("STATE DELETED")) transcriber_app.unload(return_prediction_w2v2_mic_with_device) transcriber_app.unload(return_prediction_w2v2_file_with_device) # transcriber_app.launch(debug=True, share=True, ssl_verify=False) if __name__ == "__main__": transcriber_app.queue() transcriber_app.launch()