Spaces:
Running
on
Zero
Running
on
Zero
import os | |
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" | |
import gc | |
from functools import partial | |
import gradio as gr | |
import torch | |
from speechbrain.inference.interfaces import Pretrained, foreign_class | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
import librosa | |
import whisper_timestamped as whisper | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, Wav2Vec2ForCTC, AutoProcessor | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
torch.backends.cuda.matmul.allow_tf32 = True | |
def clean_up_memory(): | |
gc.collect() | |
torch.cuda.empty_cache() | |
def recap_sentence(string): | |
# Restore capitalization and punctuation using the model | |
inputs = recap_tokenizer(["restore capitalization and punctuation: " + string], return_tensors="pt", padding=True).to(device) | |
outputs = recap_model.generate(**inputs, max_length=768, num_beams=5, early_stopping=True).squeeze(0) | |
recap_result = recap_tokenizer.decode(outputs, skip_special_tokens=True) | |
return recap_result | |
def return_prediction_w2v2_mic(mic=None, progress=gr.Progress(), device=device): | |
if mic is not None: | |
download_path = mic.split(".")[0] + ".txt" | |
waveform, sr = librosa.load(mic, sr=16000) | |
w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device) | |
return "You must either provide a mic recording or a file" | |
recap_result = "" | |
prev_segment = "" | |
prev_segment_len = 0 | |
for k, segment in enumerate(w2v2_result): | |
progress(0.75, desc=" Пост-процесирање на транскриптот") | |
if prev_segment == "": | |
recap_segment= recap_sentence(segment) | |
else: | |
prev_segment_len = len(prev_segment.split()) | |
recap_segment = recap_sentence(prev_segment + " " + segment) | |
# remove prev_segment from the beginning of the recap_result | |
recap_segment = recap_segment.split() | |
recap_segment = recap_segment[prev_segment_len:] | |
recap_segment = " ".join(recap_segment) | |
prev_segment = segment[0] | |
recap_result += recap_segment + " " | |
# If the letter after punct is small, recap it | |
for i, letter in enumerate(recap_result): | |
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower(): | |
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:] | |
clean_up_memory() | |
progress(1.0, desc=" Крај на транскрипцијата") | |
with open(download_path, "w") as f: | |
f.write(recap_result) | |
return recap_result, download_path | |
def return_prediction_w2v2_file(file=None, progress=gr.Progress(), device=device): | |
if file is not None: | |
download_path = file.split(".")[0] + ".txt" | |
waveform, sr = librosa.load(file, sr=16000) | |
w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device) | |
return "You must either provide a mic recording or a file" | |
recap_result = "" | |
prev_segment = "" | |
prev_segment_len = 0 | |
for k, segment in enumerate(w2v2_result): | |
progress(0.75, desc=" Пост-процесирање на транскриптот") | |
if prev_segment == "": | |
recap_segment= recap_sentence(segment) | |
else: | |
prev_segment_len = len(prev_segment.split()) | |
recap_segment = recap_sentence(prev_segment + " " + segment) | |
# remove prev_segment from the beginning of the recap_result | |
recap_segment = recap_segment.split() | |
recap_segment = recap_segment[prev_segment_len:] | |
recap_segment = " ".join(recap_segment) | |
prev_segment = segment[0] | |
recap_result += recap_segment + " " | |
# If the letter after punct is small, recap it | |
for i, letter in enumerate(recap_result): | |
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower(): | |
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:] | |
clean_up_memory() | |
progress(1.0, desc=" Крај на транскрипцијата") | |
with open(download_path, "w") as f: | |
f.write(recap_result) | |
return recap_result, download_path | |
# Create a partial function with the device pre-applied | |
return_prediction_w2v2_mic_with_device = partial(return_prediction_w2v2_mic, device=device) | |
return_prediction_w2v2_file_with_device = partial(return_prediction_w2v2_file, device=device) | |
# Load the ASR models | |
w2v2_classifier = foreign_class(source="Macedonian-ASR/wav2vec2-aed-macedonian-asr", pymodule_file="custom_interface_app.py", classname="ASR") | |
w2v2_classifier = w2v2_classifier.to(device) | |
w2v2_classifier.eval() | |
# Load the T5 tokenizer and model for restoring capitalization | |
recap_model_name = "Macedonian-ASR/mt5-restore-capitalization-macedonian" | |
recap_tokenizer = T5Tokenizer.from_pretrained(recap_model_name) | |
recap_model = T5ForConditionalGeneration.from_pretrained(recap_model_name, torch_dtype=torch.float16) | |
recap_model.to(device) | |
recap_model.eval() | |
with gr.Blocks() as mic_transcribe_wav2vec2: | |
def clear_outputs(): | |
return {audio_input: None, output_text: "", download_file: None} | |
with gr.Row(): | |
audio_input = gr.Audio(sources="microphone", type="filepath", label="Record Audio") | |
with gr.Row(): | |
transcribe_button = gr.Button("Transcribe") | |
clear_button = gr.Button("Clear") | |
with gr.Row(): | |
output_text = gr.Textbox(label="Transcription") | |
with gr.Row(): | |
download_file = gr.File(label="Зачувај го транскриптот", file_count="single") | |
transcribe_button.click( | |
fn=return_prediction_w2v2_mic_with_device, | |
inputs=[audio_input], | |
outputs=[output_text, download_file], | |
) | |
clear_button.click( | |
fn=clear_outputs, | |
inputs=[], | |
outputs=[audio_input, output_text, download_file], | |
) | |
with gr.Blocks() as file_transcribe_wav2vec2: | |
def clear_outputs(): | |
return {audio_input: None, output_text: "", download_file: None} | |
with gr.Row(): | |
audio_input = gr.Audio(sources="upload", type="filepath", label="Record Audio") | |
with gr.Row(): | |
transcribe_button = gr.Button("Transcribe") | |
clear_button = gr.Button("Clear") | |
with gr.Row(): | |
output_text = gr.Textbox(label="Transcription") | |
with gr.Row(): | |
download_file = gr.File(label="Зачувај го транскриптот", file_count="single") | |
transcribe_button.click( | |
fn=return_prediction_w2v2_file_with_device, | |
inputs=[audio_input], | |
outputs=[output_text, download_file], | |
) | |
clear_button.click( | |
fn=clear_outputs, | |
inputs=[], | |
outputs=[audio_input, output_text, download_file], | |
) | |
# mic_transcribe_w2v2 = gr.Interface( | |
# fn=return_prediction_w2v2_with_device, | |
# inputs=gr.Audio(sources="microphone", type="filepath"), | |
# outputs=gr.Textbox(), | |
# allow_flagging="never", | |
# live=False, | |
# ) | |
# file_transcribe_w2v2 = gr.Interface( | |
# fn=return_prediction_w2v2_with_device, | |
# inputs=gr.Audio(sources="upload", type="filepath"), | |
# outputs=gr.Textbox(), | |
# allow_flagging="never", | |
# live=False | |
# ) | |
project_description = ''' | |
<img src="https://i.imghippo.com/files/JXadQ1728417387.png" | |
alt="Bookie logo" | |
style="float: right; width: 130px; height: 110px; margin-left: 10px;" /> | |
## Автори: | |
1. **Дејан Порјазовски** | |
2. **Илина Јакимовска** | |
3. **Ордан Чукалиев** | |
4. **Никола Стиков** | |
Оваа колаборација е дел од активностите на **Центарот за напредни интердисциплинарни истражувања ([ЦеНИИс](https://ukim.edu.mk/en/centri/centar-za-napredni-interdisciplinarni-istrazhuvanja-ceniis))** при УКИМ. | |
## Во тренирањето на овој модел се употребени податоци од: | |
1. Дигитален архив за етнолошки и антрополошки ресурси ([ДАЕАР](https://iea.pmf.ukim.edu.mk/tabs/view/61f236ed7d95176b747c20566ddbda1a)) при Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ. | |
2. Аудио верзија на меѓународното списание [„ЕтноАнтропоЗум“](https://etno.pmf.ukim.mk/index.php/eaz/issue/archive) на Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ. | |
3. Аудио подкастот [„Обични луѓе“](https://obicniluge.mk/episodes/) на Илина Јакимовска | |
4. Научните видеа од серијалот [„Наука за деца“](http://naukazadeca.mk), фондација [КАНТАРОТ](https://qantarot.substack.com/) | |
5. Македонска верзија на [Mozilla Common Voice](https://commonvoice.mozilla.org/en/datasets) (верзија 18.0) | |
## Како да придонесете за подобрување на македонските модели за препознавање на говор? | |
На следниот [линк](https://drive.google.com/file/d/1YdZJz9o1X8AMc6J4MNPnVZjASyIXnvoZ/view?usp=sharing) ќе најдете инструкции за тоа како да донирате македонски говор преку платформата Mozilla Common Voice. | |
''' | |
# Custom CSS | |
css = """ | |
.gradio-container { | |
background-color: #f0f0f0; /* Set your desired background color */ | |
} | |
.custom-markdown p, .custom-markdown li, .custom-markdown h2, .custom-markdown a { | |
font-size: 15px !important; | |
font-family: Arial, sans-serif !important; | |
} | |
.gradio-container { | |
background-color: #f3f3f3 !important; | |
} | |
""" | |
transcriber_app = gr.Blocks(css=css, delete_cache=(60, 120)) | |
with transcriber_app: | |
state = gr.State() | |
gr.Markdown(project_description, elem_classes="custom-markdown") | |
# gr.TabbedInterface( | |
# [mic_transcribe_whisper, mic_transcribe_compare], | |
# ["Буки-Whisper транскрипција", "Споредба на модели"], | |
# ) | |
# state = gr.State(value=[], delete_callback=lambda v: print("STATE DELETED")) | |
gr.TabbedInterface( | |
[mic_transcribe_wav2vec2, file_transcribe_wav2vec2], | |
["Буки-w2v2 транскрипција од микрофон", "Буки-w2v2 транскрипција од фајл"], | |
) | |
state = gr.State(value=[], delete_callback=lambda v: print("STATE DELETED")) | |
transcriber_app.unload(return_prediction_w2v2_mic_with_device) | |
transcriber_app.unload(return_prediction_w2v2_file_with_device) | |
# transcriber_app.launch(debug=True, share=True, ssl_verify=False) | |
if __name__ == "__main__": | |
transcriber_app.queue() | |
transcriber_app.launch() |