import tensorflow as tf import pandas as pd import gradio as gr authors_df = pd.read_csv('authors.csv') labels = sorted(list(authors_df.name)) model = tf.keras.models.load_model('efficientnetb0.h5') description = 'This is a DEMO that attempts to recognize the inspirations used by the AI art generator. After uploading a picture of an image, the application displays the predicted artist along with the probability of predicting the top three authors.The DEMO uses EfficientNetB0 convolutional neural network as a base model whose classifier was modified and trained the 8,000+ paintings from [Kaggle](https://www.kaggle.com/datasets/ikarus777/best-artworks-of-all-time) dataset. Model trained by osydorchuk89. Given the dataset limitations, the model only recognizes paintings of [50 artists](https://huggingface.co./spaces/osydorchuk/painting_authors/blob/main/authors.csv).' def predict_author(input): if input is None: return 'Please upload an image' input = input.reshape((-1, 224, 224, 3)) prediction = model.predict(input).flatten() confidences = {labels[i]: float(prediction[i]) for i in range(50)} return confidences demo = gr.Interface( title='the AI art generator sources of inspiration', description=description, fn=predict_author, inputs=gr.Image(shape=(224, 224)), outputs=gr.Label(num_top_classes=3), examples=['test_pics/eva_miro.jpg', 'test_pics/eva_bosch.jpg', 'test_pics/eva_miro_2.jpg', 'test_pics/eva_rtology.jpg'] ) demo.launch()