# ------------------------------------------------------------------------ # HOTR official code : engine/trainer.py # Copyright (c) Kakao Brain, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ import math import torch import sys import hotr.util.misc as utils import hotr.util.logger as loggers from hotr.util.ramp import * from typing import Iterable import wandb def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, max_epoch: int, ramp_up_epoch: int,rampdown_epoch: int,max_consis_coef: float=1.0,max_norm: float = 0,dataset_file: str = 'coco', log: bool = False): model.train() criterion.train() metric_logger = loggers.MetricLogger(mode="train", delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) space_fmt = str(len(str(max_epoch))) header = 'Epoch [{start_epoch: >{fill}}/{end_epoch}]'.format(start_epoch=epoch+1, end_epoch=max_epoch, fill=space_fmt) print_freq = int(len(data_loader)/5) if epoch<=rampdown_epoch: consis_coef=sigmoid_rampup(epoch,ramp_up_epoch,max_consis_coef) else: consis_coef=cosine_rampdown(epoch-rampdown_epoch,max_epoch-rampdown_epoch,max_consis_coef) print(consis_coef) print(f"\n>>> Epoch #{(epoch+1)}") for samples, targets in metric_logger.log_every(data_loader, print_freq, header): samples = samples.to(device) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] outputs = model(samples) loss_dict = criterion(outputs, targets, log) #print(loss_dict) weight_dict = criterion.weight_dict losses = sum(loss_dict[k] * weight_dict[k]*consis_coef if 'consistency' in k else loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) # reduce losses over all GPUs for logging purposes loss_dict_reduced = utils.reduce_dict(loss_dict) loss_dict_reduced_unscaled = {f'{k}_unscaled': v for k, v in loss_dict_reduced.items()} loss_dict_reduced_scaled = {k: v * weight_dict[k]*consis_coef if 'consistency' in k else v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict} losses_reduced_scaled = sum(loss_dict_reduced_scaled.values()) loss_value = losses_reduced_scaled.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) print(loss_dict_reduced) sys.exit(1) optimizer.zero_grad() losses.backward() if max_norm > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) optimizer.step() metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled) if "obj_class_error" in loss_dict: metric_logger.update(obj_class_error=loss_dict_reduced['obj_class_error']) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) # gather the stats from all processes metric_logger.synchronize_between_processes() if utils.get_rank() == 0 and log: wandb.log(loss_dict_reduced_scaled) print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()}