# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Transforms and data augmentation for both image + bbox. """ import random import PIL import torch import torchvision.transforms as T import torchvision.transforms.functional as F from hotr.util.box_ops import box_xyxy_to_cxcywh from hotr.util.misc import interpolate def crop(image, target, region): cropped_image = F.crop(image, *region) target = target.copy() i, j, h, w = region # should we do something wrt the original size? target["size"] = torch.tensor([h, w]) max_size = torch.as_tensor([w, h], dtype=torch.float32) fields = ["labels", "area", "iscrowd"] # add additional fields if "inst_actions" in target.keys(): fields.append("inst_actions") if "boxes" in target: boxes = target["boxes"] cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) cropped_boxes = cropped_boxes.clamp(min=0) area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) target["boxes"] = cropped_boxes.reshape(-1, 4) target["area"] = area fields.append("boxes") if "pair_boxes" in target or ("sub_boxes" in target and "obj_boxes" in target): if "pair_boxes" in target: pair_boxes = target["pair_boxes"] hboxes = pair_boxes[:, :4] oboxes = pair_boxes[:, 4:] if ("sub_boxes" in target and "obj_boxes" in target): hboxes = target["sub_boxes"] oboxes = target["obj_boxes"] cropped_hboxes = hboxes - torch.as_tensor([j, i, j, i]) cropped_hboxes = torch.min(cropped_hboxes.reshape(-1, 2, 2), max_size) cropped_hboxes = cropped_hboxes.clamp(min=0) hboxes = cropped_hboxes.reshape(-1, 4) obj_mask = (oboxes[:, 0] != -1) if obj_mask.sum() != 0: cropped_oboxes = oboxes[obj_mask] - torch.as_tensor([j, i, j, i]) cropped_oboxes = torch.min(cropped_oboxes.reshape(-1, 2, 2), max_size) cropped_oboxes = cropped_oboxes.clamp(min=0) oboxes[obj_mask] = cropped_oboxes.reshape(-1, 4) else: cropped_oboxes = oboxes cropped_pair_boxes = torch.cat([hboxes, oboxes], dim=-1) target["pair_boxes"] = cropped_pair_boxes pair_fields = ["pair_boxes", "pair_actions", "pair_targets"] if "masks" in target: # FIXME should we update the area here if there are no boxes[? target['masks'] = target['masks'][:, i:i + h, j:j + w] fields.append("masks") # remove elements for which the boxes or masks that have zero area if "boxes" in target or "masks" in target: # favor boxes selection when defining which elements to keep # this is compatible with previous implementation if "boxes" in target: cropped_boxes = target['boxes'].reshape(-1, 2, 2) keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) else: keep = target['masks'].flatten(1).any(1) for field in fields: if field in target: # added this because there is no 'iscrowd' field in v-coco dataset target[field] = target[field][keep] # remove elements that have redundant area if "boxes" in target and "labels" in target: cropped_boxes = target['boxes'] cropped_labels = target['labels'] cnr, keep_idx = [], [] for idx, (cropped_box, cropped_lbl) in enumerate(zip(cropped_boxes, cropped_labels)): if str((cropped_box, cropped_lbl)) not in cnr: cnr.append(str((cropped_box, cropped_lbl))) keep_idx.append(True) else: keep_idx.append(False) for field in fields: if field in target: target[field] = target[field][keep_idx] # remove elements for which pair boxes have zero area if "pair_boxes" in target: cropped_hboxes = target["pair_boxes"][:, :4].reshape(-1, 2, 2) cropped_oboxes = target["pair_boxes"][:, 4:].reshape(-1, 2, 2) keep_h = torch.all(cropped_hboxes[:, 1, :] > cropped_hboxes[:, 0, :], dim=1) keep_o = torch.all(cropped_oboxes[:, 1, :] > cropped_oboxes[:, 0, :], dim=1) not_empty_o = torch.all(target["pair_boxes"][:, 4:] >= 0, dim=1) discard_o = (~keep_o) & not_empty_o if (discard_o).sum() > 0: target["pair_boxes"][discard_o, 4:] = -1 for pair_field in pair_fields: target[pair_field] = target[pair_field][keep_h] return cropped_image, target def hflip(image, target): flipped_image = F.hflip(image) w, h = image.size target = target.copy() if "boxes" in target: boxes = target["boxes"] boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0]) target["boxes"] = boxes if "pair_boxes" in target: pair_boxes = target["pair_boxes"] hboxes = pair_boxes[:, :4] oboxes = pair_boxes[:, 4:] # human flip hboxes = hboxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0]) # object flip obj_mask = (oboxes[:, 0] != -1) if obj_mask.sum() != 0: o_tmp = oboxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0]) oboxes[obj_mask] = o_tmp[obj_mask] pair_boxes = torch.cat([hboxes, oboxes], dim=-1) target["pair_boxes"] = pair_boxes if "masks" in target: target['masks'] = target['masks'].flip(-1) return flipped_image, target def resize(image, target, size, max_size=None): # size can be min_size (scalar) or (w, h) tuple def get_size_with_aspect_ratio(image_size, size, max_size=None): w, h = image_size if max_size is not None: min_original_size = float(min((w, h))) max_original_size = float(max((w, h))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (w <= h and w == size) or (h <= w and h == size): return (h, w) if w < h: ow = size oh = int(size * h / w) else: oh = size ow = int(size * w / h) return (oh, ow) def get_size(image_size, size, max_size=None): if isinstance(size, (list, tuple)): return size[::-1] else: return get_size_with_aspect_ratio(image_size, size, max_size) size = get_size(image.size, size, max_size) rescaled_image = F.resize(image, size) if target is None: return rescaled_image, None ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)) ratio_width, ratio_height = ratios target = target.copy() if "boxes" in target: boxes = target["boxes"] scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) target["boxes"] = scaled_boxes if "pair_boxes" in target: hboxes = target["pair_boxes"][:, :4] scaled_hboxes = hboxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) hboxes = scaled_hboxes oboxes = target["pair_boxes"][:, 4:] obj_mask = (oboxes[:, 0] != -1) if obj_mask.sum() != 0: scaled_oboxes = oboxes[obj_mask] * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) oboxes[obj_mask] = scaled_oboxes target["pair_boxes"] = torch.cat([hboxes, oboxes], dim=-1) if "area" in target: area = target["area"] scaled_area = area * (ratio_width * ratio_height) target["area"] = scaled_area h, w = size target["size"] = torch.tensor([h, w]) if "masks" in target: target['masks'] = interpolate( target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5 return rescaled_image, target def pad(image, target, padding): # assumes that we only pad on the bottom right corners padded_image = F.pad(image, (0, 0, padding[0], padding[1])) if target is None: return padded_image, None target = target.copy() # should we do something wrt the original size? target["size"] = torch.tensor(padded_image[::-1]) if "masks" in target: target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1])) return padded_image, target class RandomCrop(object): def __init__(self, size): self.size = size def __call__(self, img, target): region = T.RandomCrop.get_params(img, self.size) return crop(img, target, region) class RandomSizeCrop(object): def __init__(self, min_size: int, max_size: int): self.min_size = min_size self.max_size = max_size def __call__(self, img: PIL.Image.Image, target: dict): w = random.randint(self.min_size, min(img.width, self.max_size)) h = random.randint(self.min_size, min(img.height, self.max_size)) region = T.RandomCrop.get_params(img, [h, w]) return crop(img, target, region) class CenterCrop(object): def __init__(self, size): self.size = size def __call__(self, img, target): image_width, image_height = img.size crop_height, crop_width = self.size crop_top = int(round((image_height - crop_height) / 2.)) crop_left = int(round((image_width - crop_width) / 2.)) return crop(img, target, (crop_top, crop_left, crop_height, crop_width)) class RandomHorizontalFlip(object): def __init__(self, p=0.5): self.p = p def __call__(self, img, target): if random.random() < self.p: return hflip(img, target) return img, target class RandomResize(object): def __init__(self, sizes, max_size=None): assert isinstance(sizes, (list, tuple)) self.sizes = sizes self.max_size = max_size def __call__(self, img, target=None): size = random.choice(self.sizes) return resize(img, target, size, self.max_size) class RandomPad(object): def __init__(self, max_pad): self.max_pad = max_pad def __call__(self, img, target): pad_x = random.randint(0, self.max_pad) pad_y = random.randint(0, self.max_pad) return pad(img, target, (pad_x, pad_y)) class RandomSelect(object): """ Randomly selects between transforms1 and transforms2, with probability p for transforms1 and (1 - p) for transforms2 """ def __init__(self, transforms1, transforms2, p=0.5): self.transforms1 = transforms1 self.transforms2 = transforms2 self.p = p def __call__(self, img, target): if random.random() < self.p: return self.transforms1(img, target) return self.transforms2(img, target) class ToTensor(object): def __call__(self, img, target): return F.to_tensor(img), target class RandomErasing(object): def __init__(self, *args, **kwargs): self.eraser = T.RandomErasing(*args, **kwargs) def __call__(self, img, target): return self.eraser(img), target class Normalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, image, target=None): image = F.normalize(image, mean=self.mean, std=self.std) if target is None: return image, None target = target.copy() h, w = image.shape[-2:] if "boxes" in target: boxes = target["boxes"] boxes = box_xyxy_to_cxcywh(boxes) boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32) target["boxes"] = boxes if "pair_boxes" in target: hboxes = target["pair_boxes"][:, :4] hboxes = box_xyxy_to_cxcywh(hboxes) hboxes = hboxes / torch.tensor([w, h, w, h], dtype=torch.float32) oboxes = target["pair_boxes"][:, 4:] obj_mask = (oboxes[:, 0] != -1) if obj_mask.sum() != 0: oboxes[obj_mask] = box_xyxy_to_cxcywh(oboxes[obj_mask]) oboxes[obj_mask] = oboxes[obj_mask] / torch.tensor([w, h, w, h], dtype=torch.float32) pair_boxes = torch.cat([hboxes, oboxes], dim=-1) target["pair_boxes"] = pair_boxes return image, target class ColorJitter(object): def __init__(self, brightness=0, contrast=0, saturatio=0, hue=0): self.color_jitter = T.ColorJitter(brightness, contrast, saturatio, hue) def __call__(self, img, target): return self.color_jitter(img), target class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string