# Copyright (c) Kakaobrain, Inc. and its affiliates. All Rights Reserved """ V-COCO dataset which returns image_id for evaluation. """ from pathlib import Path from PIL import Image import os import numpy as np import json import torch import torch.utils.data import torchvision from torch.utils.data import Dataset from pycocotools.coco import COCO from pycocotools import mask as coco_mask from hotr.data.datasets import builtin_meta import hotr.data.transforms.transforms as T class VCocoDetection(Dataset): def __init__(self, img_folder, ann_file, all_file, filter_empty_gt=True, transforms=None): self.img_folder = img_folder self.file_meta = dict() self._transforms = transforms self.ann_file = ann_file self.all_file = all_file self.filter_empty_gt = filter_empty_gt # COCO initialize self.coco = COCO(self.all_file) self.COCO_CLASSES = builtin_meta._get_coco_instances_meta()['coco_classes'] self.file_meta['coco_classes'] = self.COCO_CLASSES # Load V-COCO Dataset self.vcoco_all = self.load_vcoco(self.ann_file) # Save COCO annotation data self.image_ids = sorted(list(set(self.vcoco_all[0]['image_id'].reshape(-1)))) # Filter Data if filter_empty_gt: self.filter_image_id() self.img_infos = self.load_annotations() # Refine Data self.save_action_name() self.mapping_inst_action_to_action() self.load_subobj_classes() self.CLASSES = self.act_list ############################################################################ # Load V-COCO Dataset ############################################################################ def load_vcoco(self, dir_name=None): with open(dir_name, 'rt') as f: vsrl_data = json.load(f) for i in range(len(vsrl_data)): vsrl_data[i]['role_object_id'] = np.array(vsrl_data[i]['role_object_id']).reshape((len(vsrl_data[i]['role_name']),-1)).T for j in ['ann_id', 'label', 'image_id']: vsrl_data[i][j] = np.array(vsrl_data[i][j]).reshape((-1,1)) return vsrl_data ############################################################################ # Refine Data ############################################################################ def save_action_name(self): self.inst_act_list = list() self.act_list = list() # add instance action human classes self.num_subject_act = 0 for vcoco in self.vcoco_all: self.inst_act_list.append('human_' + vcoco['action_name']) self.num_subject_act += 1 # add instance action object classes for vcoco in self.vcoco_all: if len(vcoco['role_name']) == 3: self.inst_act_list.append('object_' + vcoco['action_name']+'_'+vcoco['role_name'][1]) self.inst_act_list.append('object_' + vcoco['action_name']+'_'+vcoco['role_name'][2]) elif len(vcoco['role_name']) < 2: continue else: self.inst_act_list.append('object_' + vcoco['action_name']+'_'+vcoco['role_name'][-1]) # when only two roles # add action classes for vcoco in self.vcoco_all: if len(vcoco['role_name']) == 3: self.act_list.append(vcoco['action_name']+'_'+vcoco['role_name'][1]) self.act_list.append(vcoco['action_name']+'_'+vcoco['role_name'][2]) else: self.act_list.append(vcoco['action_name']+'_'+vcoco['role_name'][-1]) # add to meta self.file_meta['action_classes'] = self.act_list def mapping_inst_action_to_action(self): sub_idx = 0 obj_idx = self.num_subject_act self.sub_label_to_action = list() self.obj_label_to_action = list() for vcoco in self.vcoco_all: role_name = vcoco['role_name'] self.sub_label_to_action.append(sub_idx) if len(role_name) == 3 : self.sub_label_to_action.append(sub_idx) self.obj_label_to_action.append(obj_idx) self.obj_label_to_action.append(obj_idx+1) obj_idx += 2 elif len(role_name) == 2: self.obj_label_to_action.append(obj_idx) obj_idx += 1 else: self.obj_label_to_action.append(0) sub_idx += 1 def load_subobj_classes(self): self.vcoco_labels = dict() for img in self.image_ids: self.vcoco_labels[img] = dict() self.vcoco_labels[img]['boxes'] = np.empty((0, 4), dtype=np.float32) self.vcoco_labels[img]['categories'] = np.empty((0), dtype=np.int32) ann_ids = self.coco.getAnnIds(imgIds=img, iscrowd=None) objs = self.coco.loadAnns(ann_ids) valid_ann_ids = [] for i, obj in enumerate(objs): if 'ignore' in obj and obj['ignore'] == 1: continue x1 = obj['bbox'][0] y1 = obj['bbox'][1] x2 = x1 + np.maximum(0., obj['bbox'][2] - 1.) y2 = y1 + np.maximum(0., obj['bbox'][3] - 1.) if obj['area'] > 0 and x2 > x1 and y2 > y1: bbox = np.array([x1, y1, x2, y2]).reshape(1, -1) cls = obj['category_id'] self.vcoco_labels[img]['boxes'] = np.concatenate([self.vcoco_labels[img]['boxes'], bbox], axis=0) self.vcoco_labels[img]['categories'] = np.concatenate([self.vcoco_labels[img]['categories'], [cls]], axis=0) valid_ann_ids.append(ann_ids[i]) num_valid_objs = len(valid_ann_ids) self.vcoco_labels[img]['agent_actions'] = -np.ones((num_valid_objs, self.num_action()), dtype=np.int32) self.vcoco_labels[img]['obj_actions'] = np.zeros((num_valid_objs, self.num_action()), dtype=np.int32) self.vcoco_labels[img]['role_id'] = -np.ones((num_valid_objs, self.num_action()), dtype=np.int32) for ix, ann_id in enumerate(valid_ann_ids): in_vcoco = np.where(self.vcoco_all[0]['ann_id'] == ann_id)[0] if in_vcoco.size > 0: self.vcoco_labels[img]['agent_actions'][ix, :] = 0 agent_act_id = 0 obj_act_id = -1 for i, x in enumerate(self.vcoco_all): has_label = np.where(np.logical_and(x['ann_id'] == ann_id, x['label'] == 1))[0] if has_label.size > 0: assert has_label.size == 1 rids = x['role_object_id'][has_label] if rids.shape[1] == 3: self.vcoco_labels[img]['agent_actions'][ix, agent_act_id] = 1 self.vcoco_labels[img]['agent_actions'][ix, agent_act_id+1] = 1 agent_act_id += 2 else: self.vcoco_labels[img]['agent_actions'][ix, agent_act_id] = 1 agent_act_id += 1 if rids.shape[1] == 1 : obj_act_id += 1 for j in range(1, rids.shape[1]): obj_act_id += 1 if rids[0, j] == 0: continue # no role aid = np.where(valid_ann_ids == rids[0, j])[0] self.vcoco_labels[img]['role_id'][ix, obj_act_id] = aid self.vcoco_labels[img]['obj_actions'][aid, obj_act_id] = 1 else: rids = x['role_object_id'][0] if rids.shape[0] == 3: agent_act_id += 2 obj_act_id += 2 else: agent_act_id += 1 obj_act_id += 1 ############################################################################ # Annotation Loader ############################################################################ # >>> 1. instance def load_instance_annotations(self, image_index): num_ann = self.vcoco_labels[image_index]['boxes'].shape[0] inst_action = np.zeros((num_ann, self.num_inst_action()), np.int) inst_bbox = np.zeros((num_ann, 4), dtype=np.float32) inst_category = np.zeros((num_ann, ), dtype=np.int) for idx in range(num_ann): inst_bbox[idx] = self.vcoco_labels[image_index]['boxes'][idx] inst_category[idx]= self.vcoco_labels[image_index]['categories'][idx] #+ 1 # category 1 ~ 81 if inst_category[idx] == 1: act = self.vcoco_labels[image_index]['agent_actions'][idx] inst_action[idx, :self.num_subject_act] = act[np.unique(self.sub_label_to_action, return_index=True)[1]] # when person is the obj act = self.vcoco_labels[image_index]['obj_actions'][idx] # when person is the obj if act.any(): inst_action[idx, self.num_subject_act:] = act[np.nonzero(self.obj_label_to_action)[0]] if inst_action[idx, :self.num_subject_act].sum(axis=-1) < 0: inst_action[idx, :self.num_subject_act] = 0 else: act = self.vcoco_labels[image_index]['obj_actions'][idx] inst_action[idx, self.num_subject_act:] = act[np.nonzero(self.obj_label_to_action)[0]] # >>> For Objects that are in COCO but not in V-COCO, # >>> Human -> [-1 * 26, 0 * 25] # >>> Object -> [0 * 51] # >>> Don't return anything for actions with max 0 or max -1 max_val = inst_action.max(axis=1) if (max_val > 0).sum() == 0: print(f"No Annotations for {image_index}") print(inst_action) print(self.vcoco_labels[image_index]['agent_actions'][idx]) print(self.vcoco_labels[image_index]['obj_actions'][idx]) return inst_bbox[max_val > 0], inst_category[max_val > 0], inst_action[max_val > 0] # >>> 2. pair def load_pair_annotations(self, image_index): num_ann = self.vcoco_labels[image_index]['boxes'].shape[0] pair_action = np.zeros((0, self.num_action()), np.int) pair_bbox = np.zeros((0, 8), dtype=np.float32) pair_target = np.zeros((0, ), dtype=np.int) for idx in range(num_ann): h_box = self.vcoco_labels[image_index]['boxes'][idx] h_cat = self.vcoco_labels[image_index]['categories'][idx] if h_cat != 1 : continue # human_id = 1 h_act = self.vcoco_labels[image_index]['agent_actions'][idx] if np.any((h_act==-1)) : continue o_act = dict() for aid in range(self.num_action()): if h_act[aid] == 0 : continue o_id = self.vcoco_labels[image_index]['role_id'][idx, aid] if o_id not in o_act : o_act[o_id] = list() o_act[o_id].append(aid) for o_id in o_act.keys(): if o_id == -1: o_box = -np.ones((4, )) o_cat = -1 # target is background else: o_box = self.vcoco_labels[image_index]['boxes'][o_id] o_cat = self.vcoco_labels[image_index]['categories'][o_id] # category 0 ~ 80 box = np.concatenate([h_box, o_box]).astype(np.float32) act = np.zeros((1, self.num_action()), np.int) tar = np.zeros((1, ), np.int) tar[0] = o_cat #+ 1 # category 1 ~ 81 for o_aid in o_act[o_id] : act[0, o_aid] = 1 pair_action = np.concatenate([pair_action, act], axis=0) pair_bbox = np.concatenate([pair_bbox, np.expand_dims(box, axis=0)], axis=0) pair_target = np.concatenate([pair_target, tar], axis=0) return pair_bbox, pair_action, pair_target # >>> 3. image infos def load_annotations(self): img_infos = [] for i in self.image_ids: info = self.coco.loadImgs([i])[0] img_infos.append(info) return img_infos ############################################################################ # Check Method ############################################################################ def sum_action_ann_for_id(self, find_idx): sum = 0 for action_ann in self.vcoco_all: img_ids = action_ann['image_id'] img_labels = action_ann['label'] final_inds = img_ids[img_labels == 1] if (find_idx in final_inds): sum += 1 # sum of class-wise existence return (sum > 0) def filter_image_id(self): empty_gt_list = [] for img_id in self.image_ids: if not self.sum_action_ann_for_id(img_id): empty_gt_list.append(img_id) for remove_id in empty_gt_list: rm_idx = self.image_ids.index(remove_id) self.image_ids.remove(remove_id) ############################################################################ # Preprocessing ############################################################################ def prepare_img(self, idx): img_info = self.img_infos[idx] image = Image.open(os.path.join(self.img_folder, img_info['file_name'])).convert('RGB') target = self.get_ann_info(idx) w, h = image.size target["orig_size"] = torch.as_tensor([int(h), int(w)]) target["size"] = torch.as_tensor([int(h), int(w)]) if self._transforms is not None: img, target = self._transforms(image, target) # "size" gets converted here return img, target ############################################################################ # Get Method ############################################################################ def __getitem__(self, idx): img, target = self.prepare_img(idx) return img, target def __len__(self): return len(self.image_ids) def get_human_label_idx(self): return self.sub_label_to_action def get_object_label_idx(self): return self.obj_label_to_action def get_image_ids(self): return self.image_ids def get_categories(self): return self.COCO_CLASSES def get_inst_action(self): return self.inst_act_list def get_actions(self): return self.act_list def get_human_action(self): return self.inst_act_list[:self.num_subject_act] def get_object_action(self): return self.inst_act_list[self.num_subject_act:] def get_ann_info(self, idx): img_idx = int(self.image_ids[idx]) # load each annotation inst_bbox, inst_label, inst_actions = self.load_instance_annotations(img_idx) pair_bbox, pair_actions, pair_targets = self.load_pair_annotations(img_idx) sample = { 'image_id' : torch.tensor([img_idx]), 'boxes': torch.as_tensor(inst_bbox, dtype=torch.float32), 'labels': torch.tensor(inst_label, dtype=torch.int64), 'inst_actions': torch.tensor(inst_actions, dtype=torch.int64), 'pair_boxes': torch.as_tensor(pair_bbox, dtype=torch.float32), 'pair_actions': torch.tensor(pair_actions, dtype=torch.int64), 'pair_targets': torch.tensor(pair_targets, dtype=torch.int64), } return sample ############################################################################ # Number Method ############################################################################ def num_category(self): return len(self.COCO_CLASSES) def num_action(self): return len(self.act_list) def num_inst_action(self): return len(self.inst_act_list) def num_human_act(self): return len(self.inst_act_list[:self.num_subject_act]) def num_object_act(self): return len(self.inst_act_list[self.num_subject_act:]) def make_hoi_transforms(image_set): normalize = T.Compose([ T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] if image_set == 'train': return T.Compose([ T.RandomHorizontalFlip(), T.ColorJitter(.4, .4, .4), T.RandomSelect( T.RandomResize(scales, max_size=1333), T.Compose([ T.RandomResize([400, 500, 600]), T.RandomSizeCrop(384, 600), T.RandomResize(scales, max_size=1333), ]) ), normalize, ]) if image_set == 'val': return T.Compose([ T.RandomResize([800], max_size=1333), normalize, ]) if image_set == 'test': return T.Compose([ T.RandomResize([800], max_size=1333), normalize, ]) raise ValueError(f'unknown {image_set}') def build(image_set, args): root = Path(args.data_path) assert root.exists(), f'provided V-COCO path {root} does not exist' PATHS = { "train": (root / "coco/images/train2014/", root / "data/vcoco" / 'vcoco_trainval.json'), "val": (root / "coco/images/val2014", root / "data/vcoco" / 'vcoco_test.json'), "test": (root / "coco/images/val2014", root / "data/vcoco" / 'vcoco_test.json'), } img_folder, ann_file = PATHS[image_set] all_file = root / "data/instances_vcoco_all_2014.json" dataset = VCocoDetection( img_folder = img_folder, ann_file = ann_file, all_file = all_file, filter_empty_gt=True, transforms = make_hoi_transforms(image_set) ) dataset.file_meta['dataset_file'] = args.dataset_file dataset.file_meta['image_set'] = image_set return dataset