root
initial commit
5e0b9df
raw
history blame
11.1 kB
# ------------------------------------------------------------------------
# HOTR official code : main.py
# Copyright (c) Kakao Brain, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
import argparse
import datetime
import json
import random
import time
import multiprocessing
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import hotr.data.datasets as datasets
import hotr.util.misc as utils
from hotr.engine.arg_parser import get_args_parser
from hotr.data.datasets import build_dataset, get_coco_api_from_dataset
from hotr.engine.trainer import train_one_epoch
from hotr.engine import hoi_evaluator, hoi_accumulator
from hotr.models import build_model
import wandb
from hotr.util.logger import print_params, print_args
def save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename):
# save_ckpt: function for saving checkpoints
output_dir = Path(args.output_dir)
if args.output_dir:
checkpoint_path = output_dir / f'{filename}.pth'
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
def main(args):
utils.init_distributed_mode(args)
if args.frozen_weights is not None:
print("Freeze weights for detector")
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# Data Setup
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val' if not args.eval else 'test', args=args)
assert dataset_train.num_action() == dataset_val.num_action(), "Number of actions should be the same between splits"
args.num_classes = dataset_train.num_category()
args.num_actions = dataset_train.num_action()
args.action_names = dataset_train.get_actions()
if args.share_enc: args.hoi_enc_layers = args.enc_layers
if args.pretrained_dec: args.hoi_dec_layers = args.dec_layers
if args.dataset_file == 'vcoco':
# Save V-COCO dataset statistics
args.valid_ids = np.array(dataset_train.get_object_label_idx()).nonzero()[0]
args.invalid_ids = np.argwhere(np.array(dataset_train.get_object_label_idx()) == 0).squeeze(1)
args.human_actions = dataset_train.get_human_action()
args.object_actions = dataset_train.get_object_action()
args.num_human_act = dataset_train.num_human_act()
elif args.dataset_file == 'hico-det':
args.valid_obj_ids = dataset_train.get_valid_obj_ids()
print_args(args)
if args.distributed:
sampler_train = DistributedSampler(dataset_train, shuffle=True)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
# Model Setup
model, criterion, postprocessors = build_model(args)
# import pdb;pdb.set_trace()
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = print_params(model)
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
# lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [1,100])
# Weight Setup
if args.frozen_weights is not None:
if args.frozen_weights.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.frozen_weights, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.detr.load_state_dict(checkpoint['model'])
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
# lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
# import pdb;pdb.set_trace()
if args.eval:
# test only mode
if args.HOIDet:
if args.dataset_file == 'vcoco':
total_res = hoi_evaluator(args, model, criterion, postprocessors, data_loader_val, device)
sc1, sc2 = hoi_accumulator(args, total_res, True, False)
elif args.dataset_file == 'hico-det':
test_stats = hoi_evaluator(args, model, None, postprocessors, data_loader_val, device)
print(f'| mAP (full)\t\t: {test_stats["mAP"]:.2f}')
print(f'| mAP (rare)\t\t: {test_stats["mAP rare"]:.2f}')
print(f'| mAP (non-rare)\t: {test_stats["mAP non-rare"]:.2f}')
else: raise ValueError(f'dataset {args.dataset_file} is not supported.')
return
else:
test_stats, coco_evaluator = evaluate_coco(model, criterion, postprocessors,
data_loader_val, base_ds, device, args.output_dir)
if args.output_dir:
utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
return
# stats
scenario1, scenario2 = 0, 0
best_mAP, best_rare, best_non_rare = 0, 0, 0
# add argparse
if args.wandb and utils.get_rank() == 0:
wandb.init(
project=args.project_name,
group=args.group_name,
name=args.run_name,
config=args
)
wandb.watch(model)
# Training starts here!
# lr_scheduler.step()
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch, args.epochs, args.ramp_up_epoch,args.ramp_down_epoch,args.hoi_consistency_loss_coef,
args.clip_max_norm, dataset_file=args.dataset_file, log=args.wandb)
lr_scheduler.step()
# Validation
if args.validate:
print('-'*100)
if args.dataset_file == 'vcoco':
total_res = hoi_evaluator(args, model, criterion, postprocessors, data_loader_val, device)
if utils.get_rank() == 0:
sc1, sc2 = hoi_accumulator(args, total_res, False, args.wandb)
if sc1 > scenario1:
scenario1 = sc1
scenario2 = sc2
save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='best')
print(f'| Scenario #1 mAP : {sc1:.2f} ({scenario1:.2f})')
print(f'| Scenario #2 mAP : {sc2:.2f} ({scenario2:.2f})')
elif args.dataset_file == 'hico-det':
test_stats = hoi_evaluator(args, model, None, postprocessors, data_loader_val, device)
if utils.get_rank() == 0:
if test_stats['mAP'] > best_mAP:
best_mAP = test_stats['mAP']
best_rare = test_stats['mAP rare']
best_non_rare = test_stats['mAP non-rare']
save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='best')
print(f'| mAP (full)\t\t: {test_stats["mAP"]:.2f} ({best_mAP:.2f})')
print(f'| mAP (rare)\t\t: {test_stats["mAP rare"]:.2f} ({best_rare:.2f})')
print(f'| mAP (non-rare)\t: {test_stats["mAP non-rare"]:.2f} ({best_non_rare:.2f})')
if args.wandb and utils.get_rank() == 0:
wandb.log({
'mAP': test_stats['mAP'],
'mAP rare': test_stats['mAP rare'],
'mAP non-rare': test_stats['mAP non-rare']
})
print('-'*100)
save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='checkpoint')
if (epoch + 1) % args.lr_drop == 0 :
save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='checkpoint_'+str(epoch))
# if (epoch + 1) % args.pseudo_epoch == 0 :
# save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='checkpoint_pseudo_'+str(epoch))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if args.dataset_file == 'vcoco':
print(f'| Scenario #1 mAP : {scenario1:.2f}')
print(f'| Scenario #2 mAP : {scenario2:.2f}')
elif args.dataset_file == 'hico-det':
print(f'| mAP (full)\t\t: {best_mAP:.2f}')
print(f'| mAP (rare)\t\t: {best_rare:.2f}')
print(f'| mAP (non-rare)\t: {best_non_rare:.2f}')
if __name__ == '__main__':
parser = argparse.ArgumentParser(
'End-to-End Human Object Interaction training and evaluation script',
parents=[get_args_parser()]
)
args = parser.parse_args()
if args.output_dir:
args.output_dir += f"/{args.group_name}/{args.run_name}/"
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)