root
initial commit
5e0b9df
raw
history blame
5.56 kB
# ------------------------------------------------------------------------
# HOTR official code : hotr/util/logger.py
# Copyright (c) Kakao Brain, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
import torch
import time
import datetime
import sys
from time import sleep
from collections import defaultdict
from hotr.util.misc import SmoothedValue
def print_params(model):
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('\n[Logger] Number of params: ', n_parameters)
return n_parameters
def print_args(args):
print('\n[Logger] DETR Arguments:')
for k, v in vars(args).items():
if k in [
'lr', 'lr_backbone', 'lr_drop',
'frozen_weights',
'backbone', 'dilation',
'position_embedding', 'enc_layers', 'dec_layers', 'num_queries',
'dataset_file']:
print(f'\t{k}: {v}')
if args.HOIDet:
print('\n[Logger] DETR_HOI Arguments:')
for k, v in vars(args).items():
if k in [
'freeze_enc',
'query_flag',
'hoi_nheads',
'hoi_dim_feedforward',
'hoi_dec_layers',
'hoi_idx_loss_coef',
'hoi_act_loss_coef',
'hoi_eos_coef',
'object_threshold']:
print(f'\t{k}: {v}')
class MetricLogger(object):
def __init__(self, mode="test", delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
self.mode = mode
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
if torch.cuda.is_available():
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}',
'max mem: {memory:.0f}'
])
else:
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
])
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if (i % print_freq == 0 and i !=0) or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i+1, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB),
flush=(self.mode=='test'), end=("\r" if self.mode=='test' else "\n"))
else:
print(log_msg.format(
i+1, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)),
flush=(self.mode=='test'), end=("\r" if self.mode=='test' else "\n"))
else:
log_interval = self.delimiter.join([header, '[{0' + space_fmt + '}/{1}]'])
if torch.cuda.is_available(): print(log_interval.format(i+1, len(iterable)), flush=True, end="\r")
else: print(log_interval.format(i+1, len(iterable)), flush=True, end="\r")
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
if self.mode=='test': print("")
print('[stats] Total Time ({}) : {} ({:.4f} s / it)'.format(
self.mode, total_time_str, total_time / len(iterable)))