Spaces:
Runtime error
Runtime error
# ------------------------------------------------------------------------ | |
# HOTR official code : hotr/util/logger.py | |
# Copyright (c) Kakao Brain, Inc. and its affiliates. All Rights Reserved | |
# ------------------------------------------------------------------------ | |
# Modified from DETR (https://github.com/facebookresearch/detr) | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
# ------------------------------------------------------------------------ | |
import torch | |
import time | |
import datetime | |
import sys | |
from time import sleep | |
from collections import defaultdict | |
from hotr.util.misc import SmoothedValue | |
def print_params(model): | |
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
print('\n[Logger] Number of params: ', n_parameters) | |
return n_parameters | |
def print_args(args): | |
print('\n[Logger] DETR Arguments:') | |
for k, v in vars(args).items(): | |
if k in [ | |
'lr', 'lr_backbone', 'lr_drop', | |
'frozen_weights', | |
'backbone', 'dilation', | |
'position_embedding', 'enc_layers', 'dec_layers', 'num_queries', | |
'dataset_file']: | |
print(f'\t{k}: {v}') | |
if args.HOIDet: | |
print('\n[Logger] DETR_HOI Arguments:') | |
for k, v in vars(args).items(): | |
if k in [ | |
'freeze_enc', | |
'query_flag', | |
'hoi_nheads', | |
'hoi_dim_feedforward', | |
'hoi_dec_layers', | |
'hoi_idx_loss_coef', | |
'hoi_act_loss_coef', | |
'hoi_eos_coef', | |
'object_threshold']: | |
print(f'\t{k}: {v}') | |
class MetricLogger(object): | |
def __init__(self, mode="test", delimiter="\t"): | |
self.meters = defaultdict(SmoothedValue) | |
self.delimiter = delimiter | |
self.mode = mode | |
def update(self, **kwargs): | |
for k, v in kwargs.items(): | |
if isinstance(v, torch.Tensor): | |
v = v.item() | |
assert isinstance(v, (float, int)) | |
self.meters[k].update(v) | |
def __getattr__(self, attr): | |
if attr in self.meters: | |
return self.meters[attr] | |
if attr in self.__dict__: | |
return self.__dict__[attr] | |
raise AttributeError("'{}' object has no attribute '{}'".format( | |
type(self).__name__, attr)) | |
def __str__(self): | |
loss_str = [] | |
for name, meter in self.meters.items(): | |
loss_str.append( | |
"{}: {}".format(name, str(meter)) | |
) | |
return self.delimiter.join(loss_str) | |
def synchronize_between_processes(self): | |
for meter in self.meters.values(): | |
meter.synchronize_between_processes() | |
def add_meter(self, name, meter): | |
self.meters[name] = meter | |
def log_every(self, iterable, print_freq, header=None): | |
i = 0 | |
if not header: | |
header = '' | |
start_time = time.time() | |
end = time.time() | |
iter_time = SmoothedValue(fmt='{avg:.4f}') | |
data_time = SmoothedValue(fmt='{avg:.4f}') | |
space_fmt = ':' + str(len(str(len(iterable)))) + 'd' | |
if torch.cuda.is_available(): | |
log_msg = self.delimiter.join([ | |
header, | |
'[{0' + space_fmt + '}/{1}]', | |
'eta: {eta}', | |
'{meters}', | |
'time: {time}', | |
'data: {data}', | |
'max mem: {memory:.0f}' | |
]) | |
else: | |
log_msg = self.delimiter.join([ | |
header, | |
'[{0' + space_fmt + '}/{1}]', | |
'eta: {eta}', | |
'{meters}', | |
'time: {time}', | |
'data: {data}' | |
]) | |
MB = 1024.0 * 1024.0 | |
for obj in iterable: | |
data_time.update(time.time() - end) | |
yield obj | |
iter_time.update(time.time() - end) | |
if (i % print_freq == 0 and i !=0) or i == len(iterable) - 1: | |
eta_seconds = iter_time.global_avg * (len(iterable) - i) | |
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
if torch.cuda.is_available(): | |
print(log_msg.format( | |
i+1, len(iterable), eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), data=str(data_time), | |
memory=torch.cuda.max_memory_allocated() / MB), | |
flush=(self.mode=='test'), end=("\r" if self.mode=='test' else "\n")) | |
else: | |
print(log_msg.format( | |
i+1, len(iterable), eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), data=str(data_time)), | |
flush=(self.mode=='test'), end=("\r" if self.mode=='test' else "\n")) | |
else: | |
log_interval = self.delimiter.join([header, '[{0' + space_fmt + '}/{1}]']) | |
if torch.cuda.is_available(): print(log_interval.format(i+1, len(iterable)), flush=True, end="\r") | |
else: print(log_interval.format(i+1, len(iterable)), flush=True, end="\r") | |
i += 1 | |
end = time.time() | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
if self.mode=='test': print("") | |
print('[stats] Total Time ({}) : {} ({:.4f} s / it)'.format( | |
self.mode, total_time_str, total_time / len(iterable))) | |