root
initial commit
5e0b9df
raw
history blame
8.88 kB
# ------------------------------------------------------------------------
# HOTR official code : hotr/models/detr.py
# Copyright (c) Kakao Brain, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
"""
DETR & HOTR model and criterion classes.
"""
import torch
import torch.nn.functional as F
from torch import nn
from hotr.util.misc import (NestedTensor, nested_tensor_from_tensor_list)
from .backbone import build_backbone
from .detr_matcher import build_matcher
from .hotr_matcher import build_hoi_matcher
from .transformer import build_transformer, build_hoi_transformer
from .criterion import SetCriterion
from .post_process import PostProcess
from .feed_forward import MLP
from .hotr import HOTR
from .hotr_v1 import HOTR_V1
class DETR(nn.Module):
""" This is the DETR module that performs object detection """
def __init__(self, backbone, transformer, num_classes, num_queries, aux_loss=False):
""" Initializes the model.
Parameters:
backbone: torch module of the backbone to be used. See backbone.py
transformer: torch module of the transformer architecture. See transformer.py
num_classes: number of object classes
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
DETR can detect in a single image. For COCO, we recommend 100 queries.
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
"""
super().__init__()
self.num_queries = num_queries
self.transformer = transformer
hidden_dim = transformer.d_model
self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
self.query_embed = nn.Embedding(num_queries, hidden_dim)
self.input_proj = nn.Conv2d(backbone.num_channels, hidden_dim, kernel_size=1)
self.backbone = backbone
self.aux_loss = aux_loss
def forward(self, samples: NestedTensor):
""" The forward expects a NestedTensor, which consists of:
- samples.tensor: batched images, of shape [batch_size x 3 x H x W]
- samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
It returns a dict with the following elements:
- "pred_logits": the classification logits (including no-object) for all queries.
Shape= [batch_size x num_queries x (num_classes + 1)]
- "pred_boxes": The normalized boxes coordinates for all queries, represented as
(center_x, center_y, height, width). These values are normalized in [0, 1],
relative to the size of each individual image (disregarding possible padding).
See PostProcess for information on how to retrieve the unnormalized bounding box.
- "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
dictionnaries containing the two above keys for each decoder layer.
"""
if isinstance(samples, (list, torch.Tensor)):
samples = nested_tensor_from_tensor_list(samples)
features, pos = self.backbone(samples)
src, mask = features[-1].decompose()
assert mask is not None
hs = self.transformer(self.input_proj(src), mask, self.query_embed.weight, pos[-1])[0]
outputs_class = self.class_embed(hs)
outputs_coord = self.bbox_embed(hs).sigmoid()
out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]}
if self.aux_loss:
out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord)
return out
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [{'pred_logits': a, 'pred_boxes': b}
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
def build(args):
device = torch.device(args.device)
backbone = build_backbone(args)
transformer = build_transformer(args)
model = DETR(
backbone,
transformer,
num_classes=args.num_classes,
num_queries=args.num_queries,
aux_loss=args.aux_loss,
)
matcher = build_matcher(args)
weight_dict = {'loss_ce': 1, 'loss_bbox': args.bbox_loss_coef}
weight_dict['loss_giou'] = args.giou_loss_coef
# TODO this is a hack
if args.aux_loss:
aux_weight_dict = {}
for i in range(args.dec_layers - 1):
aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
losses = ['labels', 'boxes', 'cardinality'] if args.frozen_weights is None else []
if args.HOIDet:
hoi_matcher = build_hoi_matcher(args)
hoi_losses = []
hoi_losses.append('pair_labels')
hoi_losses.append('pair_actions')
if args.dataset_file == 'hico-det': hoi_losses.append('pair_targets')
hoi_weight_dict={}
hoi_weight_dict['loss_hidx'] = args.hoi_idx_loss_coef
hoi_weight_dict['loss_oidx'] = args.hoi_idx_loss_coef
hoi_weight_dict['loss_h_consistency'] = args.hoi_idx_consistency_loss_coef
hoi_weight_dict['loss_o_consistency'] = args.hoi_idx_consistency_loss_coef
hoi_weight_dict['loss_act'] = args.hoi_act_loss_coef
hoi_weight_dict['loss_act_consistency'] = args.hoi_act_consistency_loss_coef
if args.dataset_file == 'hico-det':
hoi_weight_dict['loss_tgt'] = args.hoi_tgt_loss_coef
hoi_weight_dict['loss_tgt_consistency'] = args.hoi_tgt_consistency_loss_coef
if args.hoi_aux_loss:
hoi_aux_weight_dict = {}
for i in range(args.hoi_dec_layers):
hoi_aux_weight_dict.update({k + f'_{i}': v for k, v in hoi_weight_dict.items()})
hoi_weight_dict.update(hoi_aux_weight_dict)
criterion = SetCriterion(args.num_classes, matcher=matcher, weight_dict=hoi_weight_dict,
eos_coef=args.eos_coef, losses=losses, num_actions=args.num_actions,
HOI_losses=hoi_losses, HOI_matcher=hoi_matcher, args=args)
interaction_transformer = build_hoi_transformer(args) # if (args.share_enc and args.pretrained_dec) else None
kwargs = {}
if args.dataset_file == 'hico-det': kwargs['return_obj_class'] = args.valid_obj_ids
if args.sep_enc_forward:
model = HOTR_V1(
detr=model,
num_hoi_queries=args.num_hoi_queries,
num_actions=args.num_actions,
interaction_transformer=interaction_transformer,
augpath_name = args.augpath_name,
share_dec_param = args.share_dec_param,
stop_grad_stage = args.stop_grad_stage,
freeze_detr=(args.frozen_weights is not None),
share_enc=args.share_enc,
pretrained_dec=args.pretrained_dec,
temperature=args.temperature,
hoi_aux_loss=args.hoi_aux_loss,
**kwargs # only return verb class for HICO-DET dataset
)
else:
model = HOTR(
detr=model,
num_hoi_queries=args.num_hoi_queries,
num_actions=args.num_actions,
interaction_transformer=interaction_transformer,
augpath_name = args.augpath_name,
share_dec_param = args.share_dec_param,
stop_grad_stage = args.stop_grad_stage,
freeze_detr=(args.frozen_weights is not None),
share_enc=args.share_enc,
pretrained_dec=args.pretrained_dec,
temperature=args.temperature,
hoi_aux_loss=args.hoi_aux_loss,
**kwargs # only return verb class for HICO-DET dataset
)
postprocessors = {'hoi': PostProcess(args.HOIDet)}
else:
criterion = SetCriterion(args.num_classes, matcher=matcher, weight_dict=weight_dict,
eos_coef=args.eos_coef, losses=losses)
postprocessors = {'bbox': PostProcess(args.HOIDet)}
criterion.to(device)
return model, criterion, postprocessors