Spaces:
Runtime error
Runtime error
# -------------------------------------------------------------------------------------------------------------------------- | |
# Deformable DETR | |
# Copyright (c) 2020 SenseTime. All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
# -------------------------------------------------------------------------------------------------------------------------- | |
# Modified from https://github.com/pytorch/pytorch/blob/173f224570017b4b1a3a1a13d0bff280a54d9cd9/torch/distributed/launch.py | |
# -------------------------------------------------------------------------------------------------------------------------- | |
r""" | |
`torch.distributed.launch` is a module that spawns up multiple distributed | |
training processes on each of the training nodes. | |
The utility can be used for single-node distributed training, in which one or | |
more processes per node will be spawned. The utility can be used for either | |
CPU training or GPU training. If the utility is used for GPU training, | |
each distributed process will be operating on a single GPU. This can achieve | |
well-improved single-node training performance. It can also be used in | |
multi-node distributed training, by spawning up multiple processes on each node | |
for well-improved multi-node distributed training performance as well. | |
This will especially be benefitial for systems with multiple Infiniband | |
interfaces that have direct-GPU support, since all of them can be utilized for | |
aggregated communication bandwidth. | |
In both cases of single-node distributed training or multi-node distributed | |
training, this utility will launch the given number of processes per node | |
(``--nproc_per_node``). If used for GPU training, this number needs to be less | |
or euqal to the number of GPUs on the current system (``nproc_per_node``), | |
and each process will be operating on a single GPU from *GPU 0 to | |
GPU (nproc_per_node - 1)*. | |
**How to use this module:** | |
1. Single-Node multi-process distributed training | |
:: | |
>>> python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE | |
YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3 and all other | |
arguments of your training script) | |
2. Multi-Node multi-process distributed training: (e.g. two nodes) | |
Node 1: *(IP: 192.168.1.1, and has a free port: 1234)* | |
:: | |
>>> python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE | |
--nnodes=2 --node_rank=0 --master_addr="192.168.1.1" | |
--master_port=1234 YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3 | |
and all other arguments of your training script) | |
Node 2: | |
:: | |
>>> python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_YOU_HAVE | |
--nnodes=2 --node_rank=1 --master_addr="192.168.1.1" | |
--master_port=1234 YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3 | |
and all other arguments of your training script) | |
3. To look up what optional arguments this module offers: | |
:: | |
>>> python -m torch.distributed.launch --help | |
**Important Notices:** | |
1. This utilty and multi-process distributed (single-node or | |
multi-node) GPU training currently only achieves the best performance using | |
the NCCL distributed backend. Thus NCCL backend is the recommended backend to | |
use for GPU training. | |
2. In your training program, you must parse the command-line argument: | |
``--local_rank=LOCAL_PROCESS_RANK``, which will be provided by this module. | |
If your training program uses GPUs, you should ensure that your code only | |
runs on the GPU device of LOCAL_PROCESS_RANK. This can be done by: | |
Parsing the local_rank argument | |
:: | |
>>> import argparse | |
>>> parser = argparse.ArgumentParser() | |
>>> parser.add_argument("--local_rank", type=int) | |
>>> args = parser.parse_args() | |
Set your device to local rank using either | |
:: | |
>>> torch.cuda.set_device(arg.local_rank) # before your code runs | |
or | |
:: | |
>>> with torch.cuda.device(arg.local_rank): | |
>>> # your code to run | |
3. In your training program, you are supposed to call the following function | |
at the beginning to start the distributed backend. You need to make sure that | |
the init_method uses ``env://``, which is the only supported ``init_method`` | |
by this module. | |
:: | |
torch.distributed.init_process_group(backend='YOUR BACKEND', | |
init_method='env://') | |
4. In your training program, you can either use regular distributed functions | |
or use :func:`torch.nn.parallel.DistributedDataParallel` module. If your | |
training program uses GPUs for training and you would like to use | |
:func:`torch.nn.parallel.DistributedDataParallel` module, | |
here is how to configure it. | |
:: | |
model = torch.nn.parallel.DistributedDataParallel(model, | |
device_ids=[arg.local_rank], | |
output_device=arg.local_rank) | |
Please ensure that ``device_ids`` argument is set to be the only GPU device id | |
that your code will be operating on. This is generally the local rank of the | |
process. In other words, the ``device_ids`` needs to be ``[args.local_rank]``, | |
and ``output_device`` needs to be ``args.local_rank`` in order to use this | |
utility | |
5. Another way to pass ``local_rank`` to the subprocesses via environment variable | |
``LOCAL_RANK``. This behavior is enabled when you launch the script with | |
``--use_env=True``. You must adjust the subprocess example above to replace | |
``args.local_rank`` with ``os.environ['LOCAL_RANK']``; the launcher | |
will not pass ``--local_rank`` when you specify this flag. | |
.. warning:: | |
``local_rank`` is NOT globally unique: it is only unique per process | |
on a machine. Thus, don't use it to decide if you should, e.g., | |
write to a networked filesystem. See | |
https://github.com/pytorch/pytorch/issues/12042 for an example of | |
how things can go wrong if you don't do this correctly. | |
""" | |
import sys | |
import subprocess | |
import os | |
import socket | |
from argparse import ArgumentParser, REMAINDER | |
import torch | |
def parse_args(): | |
""" | |
Helper function parsing the command line options | |
@retval ArgumentParser | |
""" | |
parser = ArgumentParser(description="PyTorch distributed training launch " | |
"helper utilty that will spawn up " | |
"multiple distributed processes") | |
# Optional arguments for the launch helper | |
parser.add_argument("--nnodes", type=int, default=1, | |
help="The number of nodes to use for distributed " | |
"training") | |
parser.add_argument("--node_rank", type=int, default=0, | |
help="The rank of the node for multi-node distributed " | |
"training") | |
parser.add_argument("--nproc_per_node", type=int, default=1, | |
help="The number of processes to launch on each node, " | |
"for GPU training, this is recommended to be set " | |
"to the number of GPUs in your system so that " | |
"each process can be bound to a single GPU.") | |
parser.add_argument("--master_addr", default="127.0.0.1", type=str, | |
help="Master node (rank 0)'s address, should be either " | |
"the IP address or the hostname of node 0, for " | |
"single node multi-proc training, the " | |
"--master_addr can simply be 127.0.0.1") | |
parser.add_argument("--master_port", default=29500, type=int, | |
help="Master node (rank 0)'s free port that needs to " | |
"be used for communciation during distributed " | |
"training") | |
# positional | |
parser.add_argument("training_script", type=str, | |
help="The full path to the single GPU training " | |
"program/script to be launched in parallel, " | |
"followed by all the arguments for the " | |
"training script") | |
# rest from the training program | |
parser.add_argument('training_script_args', nargs=REMAINDER) | |
return parser.parse_args() | |
def main(): | |
args = parse_args() | |
# world size in terms of number of processes | |
dist_world_size = args.nproc_per_node * args.nnodes | |
# set PyTorch distributed related environmental variables | |
current_env = os.environ.copy() | |
current_env["MASTER_ADDR"] = args.master_addr | |
current_env["MASTER_PORT"] = str(args.master_port) | |
current_env["WORLD_SIZE"] = str(dist_world_size) | |
processes = [] | |
for local_rank in range(0, args.nproc_per_node): | |
# each process's rank | |
dist_rank = args.nproc_per_node * args.node_rank + local_rank | |
current_env["RANK"] = str(dist_rank) | |
current_env["LOCAL_RANK"] = str(local_rank) | |
cmd = [args.training_script] + args.training_script_args | |
process = subprocess.Popen(cmd, env=current_env) | |
processes.append(process) | |
for process in processes: | |
process.wait() | |
if process.returncode != 0: | |
raise subprocess.CalledProcessError(returncode=process.returncode, | |
cmd=process.args) | |
if __name__ == "__main__": | |
main() |