File size: 2,777 Bytes
5e0b9df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import torch
import hotr.util.misc as utils
import hotr.util.logger as loggers
from hotr.data.evaluators.coco_eval import CocoEvaluator

@torch.no_grad()
def coco_evaluate(model, criterion, postprocessors, data_loader, base_ds, device, output_dir):
    model.eval()
    criterion.eval()

    metric_logger = loggers.MetricLogger(delimiter="  ")
    metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
    header = 'Evaluation'

    iou_types = tuple(k for k in ('segm', 'bbox') if k in postprocessors.keys())
    coco_evaluator = CocoEvaluator(base_ds, iou_types)
    print_freq = len(data_loader)
    # coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75]

    print("\n>>> [MS-COCO Evaluation] <<<")
    for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
        samples = samples.to(device)
        targets = [{k: v.to(device) for k, v in t.items()} for t in targets]

        outputs = model(samples)
        loss_dict = criterion(outputs, targets)
        weight_dict = criterion.weight_dict

        # reduce losses over all GPUs for logging purposes
        loss_dict_reduced = utils.reduce_dict(loss_dict)
        loss_dict_reduced_scaled = {k: v * weight_dict[k]
                                    for k, v in loss_dict_reduced.items() if k in weight_dict}
        loss_dict_reduced_unscaled = {f'{k}_unscaled': v
                                      for k, v in loss_dict_reduced.items()}
        metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()),
                             **loss_dict_reduced_scaled,
                             **loss_dict_reduced_unscaled)
        metric_logger.update(class_error=loss_dict_reduced['class_error'])

        orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
        results = postprocessors['bbox'](outputs, orig_target_sizes)
        res = {target['image_id'].item(): output for target, output in zip(targets, results)}
        if coco_evaluator is not None:
            coco_evaluator.update(res)

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("\n>>> [Averaged stats] <<<\n", metric_logger)
    if coco_evaluator is not None:
        coco_evaluator.synchronize_between_processes()

    # accumulate predictions from all images
    if coco_evaluator is not None:
        coco_evaluator.accumulate()
        coco_evaluator.summarize()
    stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
    if coco_evaluator is not None:
        if 'bbox' in postprocessors.keys():
            stats['coco_eval_bbox'] = coco_evaluator.coco_eval['bbox'].stats.tolist()
            
    return stats, coco_evaluator