Spaces:
Runtime error
Runtime error
File size: 11,193 Bytes
5e0b9df aca6c75 5e0b9df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# ------------------------------------------------------------------------
# HOTR official code : main.py
# Copyright (c) Kakao Brain, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
import argparse
import datetime
import json
import random
import time
import multiprocessing
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import hotr.data.datasets as datasets
import hotr.util.misc as utils
from hotr.engine.arg_parser import get_args_parser
from hotr.data.datasets import build_dataset, get_coco_api_from_dataset
from hotr.engine.trainer import train_one_epoch
from hotr.engine import hoi_evaluator, hoi_accumulator
from hotr.models import build_model
import wandb
from hotr.util.logger import print_params, print_args
def save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename):
# save_ckpt: function for saving checkpoints
output_dir = Path(args.output_dir)
if args.output_dir:
checkpoint_path = output_dir / f'{filename}.pth'
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
def main(args):
utils.init_distributed_mode(args)
if args.frozen_weights is not None:
print("Freeze weights for detector")
if not torch.cuda.is_available():
args.device = 'cpu'
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# Data Setup
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val' if not args.eval else 'test', args=args)
assert dataset_train.num_action() == dataset_val.num_action(), "Number of actions should be the same between splits"
args.num_classes = dataset_train.num_category()
args.num_actions = dataset_train.num_action()
args.action_names = dataset_train.get_actions()
if args.share_enc: args.hoi_enc_layers = args.enc_layers
if args.pretrained_dec: args.hoi_dec_layers = args.dec_layers
if args.dataset_file == 'vcoco':
# Save V-COCO dataset statistics
args.valid_ids = np.array(dataset_train.get_object_label_idx()).nonzero()[0]
args.invalid_ids = np.argwhere(np.array(dataset_train.get_object_label_idx()) == 0).squeeze(1)
args.human_actions = dataset_train.get_human_action()
args.object_actions = dataset_train.get_object_action()
args.num_human_act = dataset_train.num_human_act()
elif args.dataset_file == 'hico-det':
args.valid_obj_ids = dataset_train.get_valid_obj_ids()
print_args(args)
if args.distributed:
sampler_train = DistributedSampler(dataset_train, shuffle=True)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
# Model Setup
model, criterion, postprocessors = build_model(args)
# import pdb;pdb.set_trace()
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = print_params(model)
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
# lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [1,100])
# Weight Setup
if args.frozen_weights is not None:
if args.frozen_weights.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.frozen_weights, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.detr.load_state_dict(checkpoint['model'])
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
# lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
# import pdb;pdb.set_trace()
if args.eval:
# test only mode
if args.HOIDet:
if args.dataset_file == 'vcoco':
total_res = hoi_evaluator(args, model, criterion, postprocessors, data_loader_val, device)
sc1, sc2 = hoi_accumulator(args, total_res, True, False)
elif args.dataset_file == 'hico-det':
test_stats = hoi_evaluator(args, model, None, postprocessors, data_loader_val, device)
print(f'| mAP (full)\t\t: {test_stats["mAP"]:.2f}')
print(f'| mAP (rare)\t\t: {test_stats["mAP rare"]:.2f}')
print(f'| mAP (non-rare)\t: {test_stats["mAP non-rare"]:.2f}')
else: raise ValueError(f'dataset {args.dataset_file} is not supported.')
return
else:
test_stats, coco_evaluator = evaluate_coco(model, criterion, postprocessors,
data_loader_val, base_ds, device, args.output_dir)
if args.output_dir:
utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
return
# stats
scenario1, scenario2 = 0, 0
best_mAP, best_rare, best_non_rare = 0, 0, 0
# add argparse
if args.wandb and utils.get_rank() == 0:
wandb.init(
project=args.project_name,
group=args.group_name,
name=args.run_name,
config=args
)
wandb.watch(model)
# Training starts here!
# lr_scheduler.step()
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch, args.epochs, args.ramp_up_epoch,args.ramp_down_epoch,args.hoi_consistency_loss_coef,
args.clip_max_norm, dataset_file=args.dataset_file, log=args.wandb)
lr_scheduler.step()
# Validation
if args.validate:
print('-'*100)
if args.dataset_file == 'vcoco':
total_res = hoi_evaluator(args, model, criterion, postprocessors, data_loader_val, device)
if utils.get_rank() == 0:
sc1, sc2 = hoi_accumulator(args, total_res, False, args.wandb)
if sc1 > scenario1:
scenario1 = sc1
scenario2 = sc2
save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='best')
print(f'| Scenario #1 mAP : {sc1:.2f} ({scenario1:.2f})')
print(f'| Scenario #2 mAP : {sc2:.2f} ({scenario2:.2f})')
elif args.dataset_file == 'hico-det':
test_stats = hoi_evaluator(args, model, None, postprocessors, data_loader_val, device)
if utils.get_rank() == 0:
if test_stats['mAP'] > best_mAP:
best_mAP = test_stats['mAP']
best_rare = test_stats['mAP rare']
best_non_rare = test_stats['mAP non-rare']
save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='best')
print(f'| mAP (full)\t\t: {test_stats["mAP"]:.2f} ({best_mAP:.2f})')
print(f'| mAP (rare)\t\t: {test_stats["mAP rare"]:.2f} ({best_rare:.2f})')
print(f'| mAP (non-rare)\t: {test_stats["mAP non-rare"]:.2f} ({best_non_rare:.2f})')
if args.wandb and utils.get_rank() == 0:
wandb.log({
'mAP': test_stats['mAP'],
'mAP rare': test_stats['mAP rare'],
'mAP non-rare': test_stats['mAP non-rare']
})
print('-'*100)
save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='checkpoint')
if (epoch + 1) % args.lr_drop == 0 :
save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='checkpoint_'+str(epoch))
# if (epoch + 1) % args.pseudo_epoch == 0 :
# save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='checkpoint_pseudo_'+str(epoch))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if args.dataset_file == 'vcoco':
print(f'| Scenario #1 mAP : {scenario1:.2f}')
print(f'| Scenario #2 mAP : {scenario2:.2f}')
elif args.dataset_file == 'hico-det':
print(f'| mAP (full)\t\t: {best_mAP:.2f}')
print(f'| mAP (rare)\t\t: {best_rare:.2f}')
print(f'| mAP (non-rare)\t: {best_non_rare:.2f}')
if __name__ == '__main__':
parser = argparse.ArgumentParser(
'End-to-End Human Object Interaction training and evaluation script',
parents=[get_args_parser()]
)
args = parser.parse_args()
if args.output_dir:
args.output_dir += f"/{args.group_name}/{args.run_name}/"
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)
|