File size: 11,193 Bytes
5e0b9df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca6c75
 
5e0b9df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# ------------------------------------------------------------------------
# HOTR official code : main.py
# Copyright (c) Kakao Brain, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
import argparse
import datetime
import json
import random
import time
import multiprocessing
from pathlib import Path

import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler

import hotr.data.datasets as datasets
import hotr.util.misc as utils
from hotr.engine.arg_parser import get_args_parser
from hotr.data.datasets import build_dataset, get_coco_api_from_dataset
from hotr.engine.trainer import train_one_epoch
from hotr.engine import hoi_evaluator, hoi_accumulator
from hotr.models import build_model
import wandb

from hotr.util.logger import print_params, print_args

def save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename):
    # save_ckpt: function for saving checkpoints
    output_dir = Path(args.output_dir)
    if args.output_dir:
        checkpoint_path = output_dir / f'{filename}.pth'
        utils.save_on_master({
            'model': model_without_ddp.state_dict(),
            'optimizer': optimizer.state_dict(),
            'lr_scheduler': lr_scheduler.state_dict(),
            'epoch': epoch,
            'args': args,
        }, checkpoint_path)

def main(args):
    utils.init_distributed_mode(args)

    if args.frozen_weights is not None:
        print("Freeze weights for detector")

    if not torch.cuda.is_available():
        args.device = 'cpu'
    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)

    # Data Setup
    dataset_train = build_dataset(image_set='train', args=args)
    dataset_val = build_dataset(image_set='val' if not args.eval else 'test', args=args)
    assert dataset_train.num_action() == dataset_val.num_action(), "Number of actions should be the same between splits"
    args.num_classes = dataset_train.num_category()
    args.num_actions = dataset_train.num_action()
    args.action_names = dataset_train.get_actions()
    if args.share_enc: args.hoi_enc_layers = args.enc_layers
    if args.pretrained_dec: args.hoi_dec_layers = args.dec_layers
    if args.dataset_file == 'vcoco':
        # Save V-COCO dataset statistics
        args.valid_ids = np.array(dataset_train.get_object_label_idx()).nonzero()[0]
        args.invalid_ids = np.argwhere(np.array(dataset_train.get_object_label_idx()) == 0).squeeze(1)
        args.human_actions = dataset_train.get_human_action()
        args.object_actions = dataset_train.get_object_action()
        args.num_human_act = dataset_train.num_human_act()
    elif args.dataset_file == 'hico-det':
        args.valid_obj_ids = dataset_train.get_valid_obj_ids()
    print_args(args)

    if args.distributed:
        sampler_train = DistributedSampler(dataset_train, shuffle=True)
        sampler_val = DistributedSampler(dataset_val, shuffle=False)
    else:
        sampler_train = torch.utils.data.RandomSampler(dataset_train)
        sampler_val = torch.utils.data.SequentialSampler(dataset_val)

    batch_sampler_train = torch.utils.data.BatchSampler(
        sampler_train, args.batch_size, drop_last=True)

    data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
                                  collate_fn=utils.collate_fn, num_workers=args.num_workers)
    data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
                                 drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)

    # Model Setup
    model, criterion, postprocessors = build_model(args)
    # import pdb;pdb.set_trace()
    model.to(device)
    
    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module
    n_parameters = print_params(model)

    param_dicts = [
        {"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
        {
            "params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
            "lr": args.lr_backbone,
        },
    ]
    optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
    # lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [1,100])
    

    # Weight Setup
    if args.frozen_weights is not None:
        if args.frozen_weights.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(
                args.frozen_weights, map_location='cpu', check_hash=True)
        else:
            checkpoint = torch.load(args.frozen_weights, map_location='cpu')
        model_without_ddp.detr.load_state_dict(checkpoint['model'])
    
    if args.resume:
        if args.resume.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(
                args.resume, map_location='cpu', check_hash=True)
        else:
            checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
            optimizer.load_state_dict(checkpoint['optimizer'])
            # lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            args.start_epoch = checkpoint['epoch'] + 1
    # import pdb;pdb.set_trace()
    if args.eval:
        # test only mode
        if args.HOIDet:
            if args.dataset_file == 'vcoco':
                total_res = hoi_evaluator(args, model, criterion, postprocessors, data_loader_val, device)
                sc1, sc2 = hoi_accumulator(args, total_res, True, False)
            elif args.dataset_file == 'hico-det':
                test_stats = hoi_evaluator(args, model, None, postprocessors, data_loader_val, device)
                print(f'| mAP (full)\t\t: {test_stats["mAP"]:.2f}')
                print(f'| mAP (rare)\t\t: {test_stats["mAP rare"]:.2f}')
                print(f'| mAP (non-rare)\t: {test_stats["mAP non-rare"]:.2f}')
            else: raise ValueError(f'dataset {args.dataset_file} is not supported.')
            return
        else:
            test_stats, coco_evaluator = evaluate_coco(model, criterion, postprocessors,
                                                  data_loader_val, base_ds, device, args.output_dir)
            if args.output_dir:
                utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
            return

    # stats
    scenario1, scenario2 = 0, 0
    best_mAP, best_rare, best_non_rare = 0, 0, 0

    # add argparse
    if args.wandb and utils.get_rank() == 0:
        wandb.init(
            project=args.project_name,
            group=args.group_name,
            name=args.run_name,
            config=args
        )
        wandb.watch(model)

    # Training starts here!
    # lr_scheduler.step()
    start_time = time.time()
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            sampler_train.set_epoch(epoch)
        train_stats = train_one_epoch(
            model, criterion, data_loader_train, optimizer, device, epoch, args.epochs, args.ramp_up_epoch,args.ramp_down_epoch,args.hoi_consistency_loss_coef,
            args.clip_max_norm, dataset_file=args.dataset_file, log=args.wandb)
        lr_scheduler.step()

        # Validation
        if args.validate:
            print('-'*100)
            if args.dataset_file == 'vcoco':
                total_res = hoi_evaluator(args, model, criterion, postprocessors, data_loader_val, device)
                if utils.get_rank() == 0:
                    sc1, sc2 = hoi_accumulator(args, total_res, False, args.wandb)
                    if sc1 > scenario1:
                        scenario1 = sc1
                        scenario2 = sc2
                        save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='best')
                    print(f'| Scenario #1 mAP : {sc1:.2f} ({scenario1:.2f})')
                    print(f'| Scenario #2 mAP : {sc2:.2f} ({scenario2:.2f})')
            elif args.dataset_file == 'hico-det':
                test_stats = hoi_evaluator(args, model, None, postprocessors, data_loader_val, device)
                if utils.get_rank() == 0:
                    if test_stats['mAP'] > best_mAP:
                        best_mAP = test_stats['mAP']
                        best_rare = test_stats['mAP rare']
                        best_non_rare = test_stats['mAP non-rare']
                        save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='best')
                    print(f'| mAP (full)\t\t: {test_stats["mAP"]:.2f} ({best_mAP:.2f})')
                    print(f'| mAP (rare)\t\t: {test_stats["mAP rare"]:.2f} ({best_rare:.2f})')
                    print(f'| mAP (non-rare)\t: {test_stats["mAP non-rare"]:.2f} ({best_non_rare:.2f})')
                    if args.wandb and utils.get_rank() == 0:
                        wandb.log({
                            'mAP': test_stats['mAP'],
                            'mAP rare': test_stats['mAP rare'],
                            'mAP non-rare': test_stats['mAP non-rare']
                        })
            print('-'*100)
        
        save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='checkpoint')
        if (epoch + 1) % args.lr_drop == 0 :
            save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='checkpoint_'+str(epoch))
        # if (epoch + 1) % args.pseudo_epoch == 0 :
        #     save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='checkpoint_pseudo_'+str(epoch))
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
    if args.dataset_file == 'vcoco':
        print(f'| Scenario #1 mAP : {scenario1:.2f}')
        print(f'| Scenario #2 mAP : {scenario2:.2f}')
    elif args.dataset_file == 'hico-det':
        print(f'| mAP (full)\t\t: {best_mAP:.2f}')
        print(f'| mAP (rare)\t\t: {best_rare:.2f}')
        print(f'| mAP (non-rare)\t: {best_non_rare:.2f}')


if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        'End-to-End Human Object Interaction training and evaluation script',
        parents=[get_args_parser()]
    )
    args = parser.parse_args()
    if args.output_dir:
        args.output_dir += f"/{args.group_name}/{args.run_name}/"
        Path(args.output_dir).mkdir(parents=True, exist_ok=True)
    main(args)