File size: 8,424 Bytes
5e0b9df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import numpy as np
import torch
from hotr.metrics.utils import _compute_ap, compute_overlap

class APRole(object):
    def __init__(self, act_name, scenario_flag=True, iou_threshold=0.5):
        self.act_name = act_name
        self.iou_threshold = iou_threshold

        self.scenario_flag = scenario_flag
        # scenario_1 : True
        # scenario_2 : False

        self.fp = [np.zeros((0,))] * len(act_name)
        self.tp  = [np.zeros((0,))] * len(act_name)
        self.score = [np.zeros((0,))] * len(act_name)
        self.num_ann = [0] * len(act_name)

    def add_data(self, h_box, o_box, score, i_box, i_act, p_box, p_act):
        # i_box, i_act : to check if only in COCO
        for label in range(len(self.act_name)):
            p_inds = (p_act[:, label] == 1)
            self.num_ann[label] += p_inds.sum()

        if h_box.shape[0] == 0 : return # if no prediction, just return
        # COCO (O), V-COCO (X) __or__ collater, no ann in image => ignore

        valid_i_inds = (i_act[:, 0] != -1) # (n_i, )
        overlaps = compute_overlap(h_box, i_box) # (n_h, n_i)
        assigned_input = np.argmax(overlaps, axis=1) # (n_h, )
        v_inds = valid_i_inds[assigned_input] # (n_h, )

        h_box = h_box[v_inds]
        score = score[:, v_inds, :]
        if h_box.shape[0] == 0 : return
        n_h = h_box.shape[0]

        valid_p_inds = (p_act[:, 0] != -1) | (p_box[:, 0] != -1)
        p_act = p_act[valid_p_inds]
        p_box = p_box[valid_p_inds]

        n_o = o_box.shape[0]
        if n_o == 0:
            # no prediction for object
            score = score.squeeze(axis=2) # (#act, n_h)

            for label in range(len(self.act_name)):
                h_inds = np.argsort(score[label])[::-1] # (n_h, )
                self.score[label] = np.append(self.score[label], score[label, h_inds])

                p_inds = (p_act[:, label] == 1)
                if p_inds.sum() == 0:
                    self.tp[label] = np.append(self.tp[label], np.array([0]*n_h))
                    self.fp[label] = np.append(self.fp[label], np.array([1]*n_h))
                    continue

                h_overlaps = compute_overlap(h_box[h_inds], p_box[p_inds, :4]) # (n_h, n_p)
                assigned_p = np.argmax(h_overlaps, axis=1) # (n_h, )
                h_max_overlap = h_overlaps[range(n_h), assigned_p] # (n_h, )

                o_overlaps = compute_overlap(np.zeros((n_h, 4)), p_box[p_inds][assigned_p, 4:8])
                o_overlaps = np.diag(o_overlaps) # (n_h, )

                no_role_inds = (p_box[p_inds][assigned_p, 4] == -1) # (n_h, )
                # human (o), action (o), no object in actual image

                h_iou_inds = (h_max_overlap > self.iou_threshold) # (n_h, )
                o_iou_inds = (o_overlaps > self.iou_threshold) # (n_h, )

                # scenario1 is not considered (already no object)
                o_iou_inds[no_role_inds] = 1

                iou_inds = (h_iou_inds & o_iou_inds)
                p_nonzero = iou_inds.nonzero()[0]
                p_inds = assigned_p[p_nonzero]
                p_iou = np.unique(p_inds, return_index=True)[1]
                p_tp = p_nonzero[p_iou]

                t = np.zeros(n_h, dtype=np.uint8)
                t[p_tp] = 1
                f = 1-t

                self.tp[label] = np.append(self.tp[label], t)
                self.fp[label] = np.append(self.fp[label], f)

        else:
            s_obj_argmax = np.argmax(score.reshape(-1, n_o), axis=1).reshape(-1, n_h) # (#act, n_h)
            s_obj_max = np.max(score.reshape(-1, n_o), axis=1).reshape(-1, n_h) # (#act, n_h)

            h_overlaps = compute_overlap(h_box, p_box[:, :4]) # (n_h, n_p)

            for label in range(len(self.act_name)):
                h_inds = np.argsort(s_obj_max[label])[::-1] # (n_h, )
                self.score[label] = np.append(self.score[label], s_obj_max[label, h_inds])

                p_inds = (p_act[:, label] == 1) # (n_p, )
                if p_inds.sum() == 0:
                    self.tp[label] = np.append(self.tp[label], np.array([0]*n_h))
                    self.fp[label] = np.append(self.fp[label], np.array([1]*n_h))
                    continue

                h_overlaps = compute_overlap(h_box[h_inds], p_box[:, :4]) # (n_h, n_p) # match for all hboxes
                h_max_overlap = np.max(h_overlaps, axis=1) # (n_h, ) # get the max overlap for hbox

                # for same human, multiple pairs exist. find the human box that has the same idx with max overlap hbox.
                h_max_temp = np.expand_dims(h_max_overlap, axis=1)
                h_over_thresh = (h_overlaps == h_max_temp) # (n_h, n_p)
                h_over_thresh = h_over_thresh & np.expand_dims(p_inds, axis=0) # (n_h, n_p) # find only for current act

                h_valid = h_over_thresh.sum(axis=1)>0 # (n_h, ) # at least one is True
                # h_valid -> if all is False, then argmax becomes 0. <- prevent
                assigned_p = np.argmax(h_over_thresh, axis=1) # (n_h, ) # p only for current act

                o_mapping_box = o_box[s_obj_argmax[label]][h_inds] # (n_h, ) # find where T is.
                p_mapping_box = p_box[assigned_p, 4:8] # (n_h, 4)

                o_overlaps = compute_overlap(o_mapping_box, p_mapping_box)
                o_overlaps = np.diag(o_overlaps) # (n_h, )
                o_overlaps.setflags(write=1)
                if (~h_valid).sum() > 0:
                    o_overlaps[~h_valid] = 0 # (n_h, )

                no_role_inds = (p_box[assigned_p, 4] == -1) # (n_h, )
                nan_box_inds = np.all(o_mapping_box == 0, axis=1) | np.all(np.isnan(o_mapping_box), axis=1)
                no_role_inds = no_role_inds & h_valid
                nan_box_inds = nan_box_inds & h_valid

                h_iou_inds = (h_max_overlap > self.iou_threshold) # (n_h, )
                o_iou_inds = (o_overlaps > self.iou_threshold) # (n_h, )

                if self.scenario_flag: # scenario_1
                    o_iou_inds[no_role_inds & nan_box_inds] = 1
                    o_iou_inds[no_role_inds & ~nan_box_inds] = 0
                else: # scenario_2
                    o_iou_inds[no_role_inds] = 1

                iou_inds = (h_iou_inds & o_iou_inds)
                p_nonzero = iou_inds.nonzero()[0]
                p_inds = assigned_p[p_nonzero]
                p_iou = np.unique(p_inds, return_index=True)[1]
                p_tp = p_nonzero[p_iou]

                t = np.zeros(n_h, dtype=np.uint8)
                t[p_tp] = 1
                f = 1-t

                self.tp[label] = np.append(self.tp[label], t)
                self.fp[label] = np.append(self.fp[label], f)

    def evaluate(self, print_log=False):
        average_precisions = dict()
        role_num = 1 if self.scenario_flag else 2
        for label in range(len(self.act_name)):

            # sort by score
            indices = np.argsort(-self.score[label])
            self.fp[label] = self.fp[label][indices]
            self.tp[label] = self.tp[label][indices]


            if self.num_ann[label] == 0:
                average_precisions[label] = 0
                continue

            # compute false positives and true positives
            self.fp[label] = np.cumsum(self.fp[label])
            self.tp[label] = np.cumsum(self.tp[label])

            # compute recall and precision
            recall    = self.tp[label] / self.num_ann[label]
            precision = self.tp[label] / np.maximum(self.tp[label] + self.fp[label], np.finfo(np.float64).eps)

            # compute average precision
            average_precisions[label] = _compute_ap(recall, precision) * 100

        if print_log: print(f'\n============= AP (Role scenario_{role_num}) ==============')
        s, n = 0, 0

        for label in range(len(self.act_name)):
            if 'point' in self.act_name[label]:
                continue
            label_name = "_".join(self.act_name[label].split("_")[1:])
            if print_log: print('{: >23}: AP = {:0.2f} (#pos = {:d})'.format(label_name, average_precisions[label], self.num_ann[label]))
            if self.num_ann[label] != 0 :
                s += average_precisions[label]
                n += 1

        mAP = s/n
        if print_log:
            print('| mAP(role scenario_{:d}): {:0.2f}'.format(role_num, mAP))
            print('----------------------------------------------------')

        return mAP