Spaces:
Runtime error
Runtime error
File size: 18,328 Bytes
5e0b9df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
# Copyright (c) Kakaobrain, Inc. and its affiliates. All Rights Reserved
"""
V-COCO dataset which returns image_id for evaluation.
"""
from pathlib import Path
from PIL import Image
import os
import numpy as np
import json
import torch
import torch.utils.data
import torchvision
from torch.utils.data import Dataset
from pycocotools.coco import COCO
from pycocotools import mask as coco_mask
from hotr.data.datasets import builtin_meta
import hotr.data.transforms.transforms as T
class VCocoDetection(Dataset):
def __init__(self,
img_folder,
ann_file,
all_file,
filter_empty_gt=True,
transforms=None):
self.img_folder = img_folder
self.file_meta = dict()
self._transforms = transforms
self.ann_file = ann_file
self.all_file = all_file
self.filter_empty_gt = filter_empty_gt
# COCO initialize
self.coco = COCO(self.all_file)
self.COCO_CLASSES = builtin_meta._get_coco_instances_meta()['coco_classes']
self.file_meta['coco_classes'] = self.COCO_CLASSES
# Load V-COCO Dataset
self.vcoco_all = self.load_vcoco(self.ann_file)
# Save COCO annotation data
self.image_ids = sorted(list(set(self.vcoco_all[0]['image_id'].reshape(-1))))
# Filter Data
if filter_empty_gt:
self.filter_image_id()
self.img_infos = self.load_annotations()
# Refine Data
self.save_action_name()
self.mapping_inst_action_to_action()
self.load_subobj_classes()
self.CLASSES = self.act_list
############################################################################
# Load V-COCO Dataset
############################################################################
def load_vcoco(self, dir_name=None):
with open(dir_name, 'rt') as f:
vsrl_data = json.load(f)
for i in range(len(vsrl_data)):
vsrl_data[i]['role_object_id'] = np.array(vsrl_data[i]['role_object_id']).reshape((len(vsrl_data[i]['role_name']),-1)).T
for j in ['ann_id', 'label', 'image_id']:
vsrl_data[i][j] = np.array(vsrl_data[i][j]).reshape((-1,1))
return vsrl_data
############################################################################
# Refine Data
############################################################################
def save_action_name(self):
self.inst_act_list = list()
self.act_list = list()
# add instance action human classes
self.num_subject_act = 0
for vcoco in self.vcoco_all:
self.inst_act_list.append('human_' + vcoco['action_name'])
self.num_subject_act += 1
# add instance action object classes
for vcoco in self.vcoco_all:
if len(vcoco['role_name']) == 3:
self.inst_act_list.append('object_' + vcoco['action_name']+'_'+vcoco['role_name'][1])
self.inst_act_list.append('object_' + vcoco['action_name']+'_'+vcoco['role_name'][2])
elif len(vcoco['role_name']) < 2:
continue
else:
self.inst_act_list.append('object_' + vcoco['action_name']+'_'+vcoco['role_name'][-1]) # when only two roles
# add action classes
for vcoco in self.vcoco_all:
if len(vcoco['role_name']) == 3:
self.act_list.append(vcoco['action_name']+'_'+vcoco['role_name'][1])
self.act_list.append(vcoco['action_name']+'_'+vcoco['role_name'][2])
else:
self.act_list.append(vcoco['action_name']+'_'+vcoco['role_name'][-1])
# add to meta
self.file_meta['action_classes'] = self.act_list
def mapping_inst_action_to_action(self):
sub_idx = 0
obj_idx = self.num_subject_act
self.sub_label_to_action = list()
self.obj_label_to_action = list()
for vcoco in self.vcoco_all:
role_name = vcoco['role_name']
self.sub_label_to_action.append(sub_idx)
if len(role_name) == 3 :
self.sub_label_to_action.append(sub_idx)
self.obj_label_to_action.append(obj_idx)
self.obj_label_to_action.append(obj_idx+1)
obj_idx += 2
elif len(role_name) == 2:
self.obj_label_to_action.append(obj_idx)
obj_idx += 1
else:
self.obj_label_to_action.append(0)
sub_idx += 1
def load_subobj_classes(self):
self.vcoco_labels = dict()
for img in self.image_ids:
self.vcoco_labels[img] = dict()
self.vcoco_labels[img]['boxes'] = np.empty((0, 4), dtype=np.float32)
self.vcoco_labels[img]['categories'] = np.empty((0), dtype=np.int32)
ann_ids = self.coco.getAnnIds(imgIds=img, iscrowd=None)
objs = self.coco.loadAnns(ann_ids)
valid_ann_ids = []
for i, obj in enumerate(objs):
if 'ignore' in obj and obj['ignore'] == 1: continue
x1 = obj['bbox'][0]
y1 = obj['bbox'][1]
x2 = x1 + np.maximum(0., obj['bbox'][2] - 1.)
y2 = y1 + np.maximum(0., obj['bbox'][3] - 1.)
if obj['area'] > 0 and x2 > x1 and y2 > y1:
bbox = np.array([x1, y1, x2, y2]).reshape(1, -1)
cls = obj['category_id']
self.vcoco_labels[img]['boxes'] = np.concatenate([self.vcoco_labels[img]['boxes'], bbox], axis=0)
self.vcoco_labels[img]['categories'] = np.concatenate([self.vcoco_labels[img]['categories'], [cls]], axis=0)
valid_ann_ids.append(ann_ids[i])
num_valid_objs = len(valid_ann_ids)
self.vcoco_labels[img]['agent_actions'] = -np.ones((num_valid_objs, self.num_action()), dtype=np.int32)
self.vcoco_labels[img]['obj_actions'] = np.zeros((num_valid_objs, self.num_action()), dtype=np.int32)
self.vcoco_labels[img]['role_id'] = -np.ones((num_valid_objs, self.num_action()), dtype=np.int32)
for ix, ann_id in enumerate(valid_ann_ids):
in_vcoco = np.where(self.vcoco_all[0]['ann_id'] == ann_id)[0]
if in_vcoco.size > 0:
self.vcoco_labels[img]['agent_actions'][ix, :] = 0
agent_act_id = 0
obj_act_id = -1
for i, x in enumerate(self.vcoco_all):
has_label = np.where(np.logical_and(x['ann_id'] == ann_id, x['label'] == 1))[0]
if has_label.size > 0:
assert has_label.size == 1
rids = x['role_object_id'][has_label]
if rids.shape[1] == 3:
self.vcoco_labels[img]['agent_actions'][ix, agent_act_id] = 1
self.vcoco_labels[img]['agent_actions'][ix, agent_act_id+1] = 1
agent_act_id += 2
else:
self.vcoco_labels[img]['agent_actions'][ix, agent_act_id] = 1
agent_act_id += 1
if rids.shape[1] == 1 : obj_act_id += 1
for j in range(1, rids.shape[1]):
obj_act_id += 1
if rids[0, j] == 0: continue # no role
aid = np.where(valid_ann_ids == rids[0, j])[0]
self.vcoco_labels[img]['role_id'][ix, obj_act_id] = aid
self.vcoco_labels[img]['obj_actions'][aid, obj_act_id] = 1
else:
rids = x['role_object_id'][0]
if rids.shape[0] == 3:
agent_act_id += 2
obj_act_id += 2
else:
agent_act_id += 1
obj_act_id += 1
############################################################################
# Annotation Loader
############################################################################
# >>> 1. instance
def load_instance_annotations(self, image_index):
num_ann = self.vcoco_labels[image_index]['boxes'].shape[0]
inst_action = np.zeros((num_ann, self.num_inst_action()), np.int)
inst_bbox = np.zeros((num_ann, 4), dtype=np.float32)
inst_category = np.zeros((num_ann, ), dtype=np.int)
for idx in range(num_ann):
inst_bbox[idx] = self.vcoco_labels[image_index]['boxes'][idx]
inst_category[idx]= self.vcoco_labels[image_index]['categories'][idx] #+ 1 # category 1 ~ 81
if inst_category[idx] == 1:
act = self.vcoco_labels[image_index]['agent_actions'][idx]
inst_action[idx, :self.num_subject_act] = act[np.unique(self.sub_label_to_action, return_index=True)[1]]
# when person is the obj
act = self.vcoco_labels[image_index]['obj_actions'][idx] # when person is the obj
if act.any():
inst_action[idx, self.num_subject_act:] = act[np.nonzero(self.obj_label_to_action)[0]]
if inst_action[idx, :self.num_subject_act].sum(axis=-1) < 0:
inst_action[idx, :self.num_subject_act] = 0
else:
act = self.vcoco_labels[image_index]['obj_actions'][idx]
inst_action[idx, self.num_subject_act:] = act[np.nonzero(self.obj_label_to_action)[0]]
# >>> For Objects that are in COCO but not in V-COCO,
# >>> Human -> [-1 * 26, 0 * 25]
# >>> Object -> [0 * 51]
# >>> Don't return anything for actions with max 0 or max -1
max_val = inst_action.max(axis=1)
if (max_val > 0).sum() == 0:
print(f"No Annotations for {image_index}")
print(inst_action)
print(self.vcoco_labels[image_index]['agent_actions'][idx])
print(self.vcoco_labels[image_index]['obj_actions'][idx])
return inst_bbox[max_val > 0], inst_category[max_val > 0], inst_action[max_val > 0]
# >>> 2. pair
def load_pair_annotations(self, image_index):
num_ann = self.vcoco_labels[image_index]['boxes'].shape[0]
pair_action = np.zeros((0, self.num_action()), np.int)
pair_bbox = np.zeros((0, 8), dtype=np.float32)
pair_target = np.zeros((0, ), dtype=np.int)
for idx in range(num_ann):
h_box = self.vcoco_labels[image_index]['boxes'][idx]
h_cat = self.vcoco_labels[image_index]['categories'][idx]
if h_cat != 1 : continue # human_id = 1
h_act = self.vcoco_labels[image_index]['agent_actions'][idx]
if np.any((h_act==-1)) : continue
o_act = dict()
for aid in range(self.num_action()):
if h_act[aid] == 0 : continue
o_id = self.vcoco_labels[image_index]['role_id'][idx, aid]
if o_id not in o_act : o_act[o_id] = list()
o_act[o_id].append(aid)
for o_id in o_act.keys():
if o_id == -1:
o_box = -np.ones((4, ))
o_cat = -1 # target is background
else:
o_box = self.vcoco_labels[image_index]['boxes'][o_id]
o_cat = self.vcoco_labels[image_index]['categories'][o_id] # category 0 ~ 80
box = np.concatenate([h_box, o_box]).astype(np.float32)
act = np.zeros((1, self.num_action()), np.int)
tar = np.zeros((1, ), np.int)
tar[0] = o_cat #+ 1 # category 1 ~ 81
for o_aid in o_act[o_id] : act[0, o_aid] = 1
pair_action = np.concatenate([pair_action, act], axis=0)
pair_bbox = np.concatenate([pair_bbox, np.expand_dims(box, axis=0)], axis=0)
pair_target = np.concatenate([pair_target, tar], axis=0)
return pair_bbox, pair_action, pair_target
# >>> 3. image infos
def load_annotations(self):
img_infos = []
for i in self.image_ids:
info = self.coco.loadImgs([i])[0]
img_infos.append(info)
return img_infos
############################################################################
# Check Method
############################################################################
def sum_action_ann_for_id(self, find_idx):
sum = 0
for action_ann in self.vcoco_all:
img_ids = action_ann['image_id']
img_labels = action_ann['label']
final_inds = img_ids[img_labels == 1]
if (find_idx in final_inds):
sum += 1
# sum of class-wise existence
return (sum > 0)
def filter_image_id(self):
empty_gt_list = []
for img_id in self.image_ids:
if not self.sum_action_ann_for_id(img_id):
empty_gt_list.append(img_id)
for remove_id in empty_gt_list:
rm_idx = self.image_ids.index(remove_id)
self.image_ids.remove(remove_id)
############################################################################
# Preprocessing
############################################################################
def prepare_img(self, idx):
img_info = self.img_infos[idx]
image = Image.open(os.path.join(self.img_folder, img_info['file_name'])).convert('RGB')
target = self.get_ann_info(idx)
w, h = image.size
target["orig_size"] = torch.as_tensor([int(h), int(w)])
target["size"] = torch.as_tensor([int(h), int(w)])
if self._transforms is not None:
img, target = self._transforms(image, target) # "size" gets converted here
return img, target
############################################################################
# Get Method
############################################################################
def __getitem__(self, idx):
img, target = self.prepare_img(idx)
return img, target
def __len__(self):
return len(self.image_ids)
def get_human_label_idx(self):
return self.sub_label_to_action
def get_object_label_idx(self):
return self.obj_label_to_action
def get_image_ids(self):
return self.image_ids
def get_categories(self):
return self.COCO_CLASSES
def get_inst_action(self):
return self.inst_act_list
def get_actions(self):
return self.act_list
def get_human_action(self):
return self.inst_act_list[:self.num_subject_act]
def get_object_action(self):
return self.inst_act_list[self.num_subject_act:]
def get_ann_info(self, idx):
img_idx = int(self.image_ids[idx])
# load each annotation
inst_bbox, inst_label, inst_actions = self.load_instance_annotations(img_idx)
pair_bbox, pair_actions, pair_targets = self.load_pair_annotations(img_idx)
sample = {
'image_id' : torch.tensor([img_idx]),
'boxes': torch.as_tensor(inst_bbox, dtype=torch.float32),
'labels': torch.tensor(inst_label, dtype=torch.int64),
'inst_actions': torch.tensor(inst_actions, dtype=torch.int64),
'pair_boxes': torch.as_tensor(pair_bbox, dtype=torch.float32),
'pair_actions': torch.tensor(pair_actions, dtype=torch.int64),
'pair_targets': torch.tensor(pair_targets, dtype=torch.int64),
}
return sample
############################################################################
# Number Method
############################################################################
def num_category(self):
return len(self.COCO_CLASSES)
def num_action(self):
return len(self.act_list)
def num_inst_action(self):
return len(self.inst_act_list)
def num_human_act(self):
return len(self.inst_act_list[:self.num_subject_act])
def num_object_act(self):
return len(self.inst_act_list[self.num_subject_act:])
def make_hoi_transforms(image_set):
normalize = T.Compose([
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
if image_set == 'train':
return T.Compose([
T.RandomHorizontalFlip(),
T.ColorJitter(.4, .4, .4),
T.RandomSelect(
T.RandomResize(scales, max_size=1333),
T.Compose([
T.RandomResize([400, 500, 600]),
T.RandomSizeCrop(384, 600),
T.RandomResize(scales, max_size=1333),
])
),
normalize,
])
if image_set == 'val':
return T.Compose([
T.RandomResize([800], max_size=1333),
normalize,
])
if image_set == 'test':
return T.Compose([
T.RandomResize([800], max_size=1333),
normalize,
])
raise ValueError(f'unknown {image_set}')
def build(image_set, args):
root = Path(args.data_path)
assert root.exists(), f'provided V-COCO path {root} does not exist'
PATHS = {
"train": (root / "coco/images/train2014/", root / "data/vcoco" / 'vcoco_trainval.json'),
"val": (root / "coco/images/val2014", root / "data/vcoco" / 'vcoco_test.json'),
"test": (root / "coco/images/val2014", root / "data/vcoco" / 'vcoco_test.json'),
}
img_folder, ann_file = PATHS[image_set]
all_file = root / "data/instances_vcoco_all_2014.json"
dataset = VCocoDetection(
img_folder = img_folder,
ann_file = ann_file,
all_file = all_file,
filter_empty_gt=True,
transforms = make_hoi_transforms(image_set)
)
dataset.file_meta['dataset_file'] = args.dataset_file
dataset.file_meta['image_set'] = image_set
return dataset
|