File size: 18,328 Bytes
5e0b9df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# Copyright (c) Kakaobrain, Inc. and its affiliates. All Rights Reserved
"""
V-COCO dataset which returns image_id for evaluation.
"""
from pathlib import Path

from PIL import Image
import os
import numpy as np
import json
import torch
import torch.utils.data
import torchvision

from torch.utils.data import Dataset
from pycocotools.coco import COCO
from pycocotools import mask as coco_mask

from hotr.data.datasets import builtin_meta
import hotr.data.transforms.transforms as T

class VCocoDetection(Dataset):
    def __init__(self,
                 img_folder,
                 ann_file,
                 all_file,
                 filter_empty_gt=True,
                 transforms=None):
        self.img_folder = img_folder
        self.file_meta = dict()
        self._transforms = transforms

        self.ann_file = ann_file
        self.all_file = all_file
        self.filter_empty_gt = filter_empty_gt

        # COCO initialize
        self.coco = COCO(self.all_file)
        self.COCO_CLASSES = builtin_meta._get_coco_instances_meta()['coco_classes']
        self.file_meta['coco_classes'] = self.COCO_CLASSES

        # Load V-COCO Dataset
        self.vcoco_all = self.load_vcoco(self.ann_file)

        # Save COCO annotation data
        self.image_ids = sorted(list(set(self.vcoco_all[0]['image_id'].reshape(-1))))

        # Filter Data
        if filter_empty_gt:
            self.filter_image_id()
        self.img_infos = self.load_annotations()

        # Refine Data
        self.save_action_name()
        self.mapping_inst_action_to_action()
        self.load_subobj_classes()
        self.CLASSES = self.act_list

    ############################################################################
    # Load V-COCO Dataset
    ############################################################################
    def load_vcoco(self, dir_name=None):
        with open(dir_name, 'rt') as f:
            vsrl_data = json.load(f)

        for i in range(len(vsrl_data)):
            vsrl_data[i]['role_object_id'] = np.array(vsrl_data[i]['role_object_id']).reshape((len(vsrl_data[i]['role_name']),-1)).T
            for j in ['ann_id', 'label', 'image_id']:
                vsrl_data[i][j] = np.array(vsrl_data[i][j]).reshape((-1,1))

        return vsrl_data

    ############################################################################
    # Refine Data
    ############################################################################
    def save_action_name(self):
        self.inst_act_list = list()
        self.act_list = list()

        # add instance action human classes
        self.num_subject_act = 0
        for vcoco in self.vcoco_all:
            self.inst_act_list.append('human_' + vcoco['action_name'])
            self.num_subject_act += 1

        # add instance action object classes
        for vcoco in self.vcoco_all:
            if len(vcoco['role_name']) == 3:
                self.inst_act_list.append('object_' + vcoco['action_name']+'_'+vcoco['role_name'][1])
                self.inst_act_list.append('object_' + vcoco['action_name']+'_'+vcoco['role_name'][2])
            elif len(vcoco['role_name']) < 2:
                continue
            else:
                self.inst_act_list.append('object_' + vcoco['action_name']+'_'+vcoco['role_name'][-1]) # when only two roles

        # add action classes
        for vcoco in self.vcoco_all:
            if len(vcoco['role_name']) == 3:
                self.act_list.append(vcoco['action_name']+'_'+vcoco['role_name'][1])
                self.act_list.append(vcoco['action_name']+'_'+vcoco['role_name'][2])
            else:
                self.act_list.append(vcoco['action_name']+'_'+vcoco['role_name'][-1])

        # add to meta
        self.file_meta['action_classes'] = self.act_list

    def mapping_inst_action_to_action(self):
        sub_idx = 0
        obj_idx = self.num_subject_act

        self.sub_label_to_action = list()
        self.obj_label_to_action = list()

        for vcoco in self.vcoco_all:
            role_name = vcoco['role_name']

            self.sub_label_to_action.append(sub_idx)
            if len(role_name) == 3 :
                self.sub_label_to_action.append(sub_idx)
                self.obj_label_to_action.append(obj_idx)
                self.obj_label_to_action.append(obj_idx+1)
                obj_idx += 2
            elif len(role_name) == 2:
                self.obj_label_to_action.append(obj_idx)
                obj_idx += 1
            else:
                self.obj_label_to_action.append(0)

            sub_idx += 1

    def load_subobj_classes(self):
        self.vcoco_labels = dict()
        for img in self.image_ids:
            self.vcoco_labels[img] = dict()
            self.vcoco_labels[img]['boxes'] = np.empty((0, 4), dtype=np.float32)
            self.vcoco_labels[img]['categories'] = np.empty((0), dtype=np.int32)

            ann_ids = self.coco.getAnnIds(imgIds=img, iscrowd=None)
            objs = self.coco.loadAnns(ann_ids)

            valid_ann_ids = []

            for i, obj in enumerate(objs):
                if 'ignore' in obj and obj['ignore'] == 1: continue

                x1 = obj['bbox'][0]
                y1 = obj['bbox'][1]
                x2 = x1 + np.maximum(0., obj['bbox'][2] - 1.)
                y2 = y1 + np.maximum(0., obj['bbox'][3] - 1.)

                if obj['area'] > 0 and x2 > x1 and y2 > y1:
                    bbox = np.array([x1, y1, x2, y2]).reshape(1, -1)
                    cls = obj['category_id']
                    self.vcoco_labels[img]['boxes'] = np.concatenate([self.vcoco_labels[img]['boxes'], bbox], axis=0)
                    self.vcoco_labels[img]['categories'] = np.concatenate([self.vcoco_labels[img]['categories'], [cls]], axis=0)

                    valid_ann_ids.append(ann_ids[i])

            num_valid_objs = len(valid_ann_ids)

            self.vcoco_labels[img]['agent_actions'] = -np.ones((num_valid_objs, self.num_action()), dtype=np.int32)
            self.vcoco_labels[img]['obj_actions'] = np.zeros((num_valid_objs, self.num_action()), dtype=np.int32)
            self.vcoco_labels[img]['role_id'] = -np.ones((num_valid_objs, self.num_action()), dtype=np.int32)

            for ix, ann_id in enumerate(valid_ann_ids):
                in_vcoco = np.where(self.vcoco_all[0]['ann_id'] == ann_id)[0]
                if in_vcoco.size > 0:
                    self.vcoco_labels[img]['agent_actions'][ix, :] = 0

                    agent_act_id = 0
                    obj_act_id = -1
                    for i, x in enumerate(self.vcoco_all):
                        has_label = np.where(np.logical_and(x['ann_id'] == ann_id, x['label'] == 1))[0]
                        if has_label.size > 0:
                            assert has_label.size == 1
                            rids = x['role_object_id'][has_label]

                            if rids.shape[1] == 3:
                                self.vcoco_labels[img]['agent_actions'][ix, agent_act_id] = 1
                                self.vcoco_labels[img]['agent_actions'][ix, agent_act_id+1] = 1
                                agent_act_id += 2
                            else:
                                self.vcoco_labels[img]['agent_actions'][ix, agent_act_id] = 1
                                agent_act_id += 1
                                if rids.shape[1] == 1 : obj_act_id += 1

                            for j in range(1, rids.shape[1]):
                                obj_act_id += 1
                                if rids[0, j] == 0: continue # no role
                                aid = np.where(valid_ann_ids == rids[0, j])[0]

                                self.vcoco_labels[img]['role_id'][ix, obj_act_id] = aid
                                self.vcoco_labels[img]['obj_actions'][aid, obj_act_id] = 1

                        else:
                            rids = x['role_object_id'][0]
                            if rids.shape[0] == 3:
                                agent_act_id += 2
                                obj_act_id += 2
                            else:
                                agent_act_id += 1
                                obj_act_id += 1

    ############################################################################
    # Annotation Loader
    ############################################################################
    # >>> 1. instance
    def load_instance_annotations(self, image_index):
        num_ann = self.vcoco_labels[image_index]['boxes'].shape[0]
        inst_action = np.zeros((num_ann, self.num_inst_action()), np.int)
        inst_bbox = np.zeros((num_ann, 4), dtype=np.float32)
        inst_category = np.zeros((num_ann, ), dtype=np.int)

        for idx in range(num_ann):
            inst_bbox[idx] = self.vcoco_labels[image_index]['boxes'][idx]
            inst_category[idx]= self.vcoco_labels[image_index]['categories'][idx] #+ 1 # category 1 ~ 81

            if inst_category[idx] == 1:
                act = self.vcoco_labels[image_index]['agent_actions'][idx]
                inst_action[idx, :self.num_subject_act] = act[np.unique(self.sub_label_to_action, return_index=True)[1]]

                # when person is the obj
                act = self.vcoco_labels[image_index]['obj_actions'][idx] # when person is the obj
                if act.any():
                    inst_action[idx, self.num_subject_act:] = act[np.nonzero(self.obj_label_to_action)[0]]
                    if inst_action[idx, :self.num_subject_act].sum(axis=-1) < 0:
                        inst_action[idx, :self.num_subject_act] = 0
            else:
                act = self.vcoco_labels[image_index]['obj_actions'][idx]
                inst_action[idx, self.num_subject_act:] = act[np.nonzero(self.obj_label_to_action)[0]]

        # >>> For Objects that are in COCO but not in V-COCO,
        # >>> Human -> [-1 * 26, 0 * 25]
        # >>> Object -> [0 * 51]
        # >>> Don't return anything for actions with max 0 or max -1
        max_val = inst_action.max(axis=1)
        if (max_val > 0).sum() == 0:
            print(f"No Annotations for {image_index}")
            print(inst_action)
            print(self.vcoco_labels[image_index]['agent_actions'][idx])
            print(self.vcoco_labels[image_index]['obj_actions'][idx])

        return inst_bbox[max_val > 0], inst_category[max_val > 0], inst_action[max_val > 0]

    # >>> 2. pair
    def load_pair_annotations(self, image_index):
        num_ann = self.vcoco_labels[image_index]['boxes'].shape[0]
        pair_action = np.zeros((0, self.num_action()), np.int)
        pair_bbox = np.zeros((0, 8), dtype=np.float32)
        pair_target = np.zeros((0, ), dtype=np.int)

        for idx in range(num_ann):
            h_box = self.vcoco_labels[image_index]['boxes'][idx]
            h_cat = self.vcoco_labels[image_index]['categories'][idx]
            if h_cat != 1 : continue # human_id = 1

            h_act = self.vcoco_labels[image_index]['agent_actions'][idx]
            if np.any((h_act==-1)) : continue

            o_act = dict()
            for aid in range(self.num_action()):
                if h_act[aid] == 0 : continue
                o_id = self.vcoco_labels[image_index]['role_id'][idx, aid]
                if o_id not in o_act : o_act[o_id] = list()
                o_act[o_id].append(aid)

            for o_id in o_act.keys():
                if o_id == -1:
                    o_box = -np.ones((4, ))
                    o_cat = -1 # target is background
                else:
                    o_box = self.vcoco_labels[image_index]['boxes'][o_id]
                    o_cat = self.vcoco_labels[image_index]['categories'][o_id] # category 0 ~ 80

                box = np.concatenate([h_box, o_box]).astype(np.float32)
                act = np.zeros((1, self.num_action()), np.int)
                tar = np.zeros((1, ), np.int)
                tar[0] = o_cat #+ 1 # category 1 ~ 81
                for o_aid in o_act[o_id] : act[0, o_aid] = 1

                pair_action = np.concatenate([pair_action, act], axis=0)
                pair_bbox = np.concatenate([pair_bbox, np.expand_dims(box, axis=0)], axis=0)
                pair_target = np.concatenate([pair_target, tar], axis=0)

        return pair_bbox, pair_action, pair_target

    # >>> 3. image infos
    def load_annotations(self):
        img_infos = []
        for i in self.image_ids:
            info = self.coco.loadImgs([i])[0]
            img_infos.append(info)
        return img_infos

    ############################################################################
    # Check Method
    ############################################################################
    def sum_action_ann_for_id(self, find_idx):
        sum = 0
        for action_ann in self.vcoco_all:
            img_ids = action_ann['image_id']
            img_labels = action_ann['label']

            final_inds = img_ids[img_labels == 1]

            if (find_idx in final_inds):
                sum += 1
        # sum of class-wise existence
        return (sum > 0)

    def filter_image_id(self):
        empty_gt_list = []
        for img_id in self.image_ids:
            if not self.sum_action_ann_for_id(img_id):
                empty_gt_list.append(img_id)

        for remove_id in empty_gt_list:
            rm_idx = self.image_ids.index(remove_id)
            self.image_ids.remove(remove_id)

    ############################################################################
    # Preprocessing
    ############################################################################
    def prepare_img(self, idx):
        img_info = self.img_infos[idx]
        image = Image.open(os.path.join(self.img_folder, img_info['file_name'])).convert('RGB')
        target = self.get_ann_info(idx)

        w, h = image.size
        target["orig_size"] = torch.as_tensor([int(h), int(w)])
        target["size"] = torch.as_tensor([int(h), int(w)])

        if self._transforms is not None:
            img, target = self._transforms(image, target) # "size" gets converted here

        return img, target

    ############################################################################
    # Get Method
    ############################################################################
    def __getitem__(self, idx):
        img, target = self.prepare_img(idx)
        return img, target

    def __len__(self):
        return len(self.image_ids)

    def get_human_label_idx(self):
        return self.sub_label_to_action

    def get_object_label_idx(self):
        return self.obj_label_to_action

    def get_image_ids(self):
        return self.image_ids

    def get_categories(self):
        return self.COCO_CLASSES

    def get_inst_action(self):
        return self.inst_act_list

    def get_actions(self):
        return self.act_list

    def get_human_action(self):
        return self.inst_act_list[:self.num_subject_act]

    def get_object_action(self):
        return self.inst_act_list[self.num_subject_act:]

    def get_ann_info(self, idx):
        img_idx = int(self.image_ids[idx])

        # load each annotation
        inst_bbox, inst_label, inst_actions = self.load_instance_annotations(img_idx)
        pair_bbox, pair_actions, pair_targets = self.load_pair_annotations(img_idx)

        sample = {
            'image_id' : torch.tensor([img_idx]),
            'boxes': torch.as_tensor(inst_bbox, dtype=torch.float32),
            'labels': torch.tensor(inst_label, dtype=torch.int64),
            'inst_actions': torch.tensor(inst_actions, dtype=torch.int64),
            'pair_boxes': torch.as_tensor(pair_bbox, dtype=torch.float32),
            'pair_actions': torch.tensor(pair_actions, dtype=torch.int64),
            'pair_targets': torch.tensor(pair_targets, dtype=torch.int64),
        }

        return sample

    ############################################################################
    # Number Method
    ############################################################################
    def num_category(self):
        return len(self.COCO_CLASSES)

    def num_action(self):
        return len(self.act_list)

    def num_inst_action(self):
        return len(self.inst_act_list)

    def num_human_act(self):
        return len(self.inst_act_list[:self.num_subject_act])

    def num_object_act(self):
        return len(self.inst_act_list[self.num_subject_act:])

def make_hoi_transforms(image_set):
    normalize = T.Compose([
        T.ToTensor(),
        T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]

    if image_set == 'train':
        return T.Compose([
            T.RandomHorizontalFlip(),
            T.ColorJitter(.4, .4, .4),
            T.RandomSelect(
                T.RandomResize(scales, max_size=1333),
                T.Compose([
                    T.RandomResize([400, 500, 600]),
                    T.RandomSizeCrop(384, 600),
                    T.RandomResize(scales, max_size=1333),
                ])
            ),
            normalize,
        ])

    if image_set == 'val':
        return T.Compose([
            T.RandomResize([800], max_size=1333),
            normalize,
        ])

    if image_set == 'test':
        return T.Compose([
            T.RandomResize([800], max_size=1333),
            normalize,
        ])

    raise ValueError(f'unknown {image_set}')

def build(image_set, args):
    root = Path(args.data_path)
    assert root.exists(), f'provided V-COCO path {root} does not exist'
    PATHS = {
        "train": (root / "coco/images/train2014/", root / "data/vcoco" / 'vcoco_trainval.json'),
        "val": (root / "coco/images/val2014", root / "data/vcoco" / 'vcoco_test.json'),
        "test": (root / "coco/images/val2014", root / "data/vcoco" / 'vcoco_test.json'),
    }

    img_folder, ann_file = PATHS[image_set]
    all_file = root / "data/instances_vcoco_all_2014.json"
    dataset = VCocoDetection(
        img_folder = img_folder,
        ann_file = ann_file,
        all_file = all_file,
        filter_empty_gt=True,
        transforms = make_hoi_transforms(image_set)
    )
    dataset.file_meta['dataset_file'] = args.dataset_file
    dataset.file_meta['image_set'] = image_set

    return dataset