File size: 4,776 Bytes
529aa2f
 
 
 
0bc27e7
529aa2f
 
 
 
0bc27e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529aa2f
 
 
 
 
 
 
 
0bc27e7
529aa2f
0bc27e7
 
 
529aa2f
 
 
0bc27e7
 
 
 
 
 
529aa2f
 
 
 
0bc27e7
529aa2f
 
0bc27e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529aa2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "531487e5-d72d-41be-b4ae-ccd9f8dc844e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7860\n",
      "Running on public URL: https://fc8effa414b728bb78.gradio.live\n",
      "\n",
      "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co./spaces)\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"https://fc8effa414b728bb78.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "loading annotations into memory...\n",
      "Done (t=1.67s)\n",
      "creating index...\n",
      "index created!\n",
      "\n",
      "[Logger] DETR Arguments:\n",
      "\tlr: 0.0001\n",
      "\tlr_backbone: 1e-05\n",
      "\tlr_drop: 80\n",
      "\tfrozen_weights: None\n",
      "\tbackbone: resnet50\n",
      "\tdilation: False\n",
      "\tposition_embedding: sine\n",
      "\tenc_layers: 6\n",
      "\tdec_layers: 6\n",
      "\tnum_queries: 100\n",
      "\tdataset_file: vcoco\n",
      "\n",
      "[Logger] Number of params:  52413912\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/jihwan/CPC_HOTR/hotr/models/position_encoding.py:41: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').\n",
      "  dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)\n"
     ]
    }
   ],
   "source": [
    "import gradio as gr\n",
    "from transformers import pipeline\n",
    "from visualization import visualization\n",
    "# pipeline = pipeline(task=\"image-classification\", model=\"julien-c/hotdog-not-hotdog\")\n",
    "# pipeline = pipeline(task=\"image-classification\", model=\"jhp/hoi\")\n",
    "\n",
    "def predict(image,threshold,topk):\n",
    "    vis_img = visualization(image,threshold,topk)\n",
    "    return vis_img\n",
    "\n",
    "gr.Interface(\n",
    "    predict,\n",
    "    inputs=[gr.Image(type='pil',label=\"input image\"),\n",
    "           gr.Slider(0, 1, value=0.4, label=\"Threshold\", info=\"Set detection score threshold between 0~1\"),\n",
    "           gr.Number(value=5,label='Topk',info='Topk prediction')],\n",
    "    outputs= gr.Image(type=\"pil\", label=\"hoi detection results\"),\n",
    "    title=\"HOI detection\",\n",
    ").launch(share=True,debug=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "439a75e9-77e6-4932-9b9b-35e2d0b7a76b",
   "metadata": {},
   "outputs": [
    {
     "ename": "TypeError",
     "evalue": "string indices must be integers",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[1], line 2\u001b[0m\n\u001b[1;32m      1\u001b[0m a\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msdsd\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m----> 2\u001b[0m \u001b[43ma\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[43m,\u001b[49m\u001b[43m:\u001b[49m\u001b[43m]\u001b[49m\n",
      "\u001b[0;31mTypeError\u001b[0m: string indices must be integers"
     ]
    }
   ],
   "source": [
    "a='sdsd'\n",
    "a[:,:]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "96fc750d-1869-4c83-87ad-d4ef909bbddb",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.17"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}