File size: 8,040 Bytes
7d18a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80c8aa3
 
 
 
 
 
 
 
 
 
 
7d18a20
80c8aa3
 
 
 
 
 
 
 
 
7d18a20
 
80c8aa3
 
7d18a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80c8aa3
7d18a20
 
80c8aa3
7d18a20
 
 
 
 
 
80c8aa3
7d18a20
 
 
 
 
 
 
 
80c8aa3
7d18a20
 
80c8aa3
 
7d18a20
 
80c8aa3
 
 
 
 
 
7d18a20
 
 
 
80c8aa3
7d18a20
 
 
 
 
 
 
 
80c8aa3
7d18a20
 
 
 
 
 
 
 
 
 
80c8aa3
 
7d18a20
 
80c8aa3
7d18a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80c8aa3
 
 
7d18a20
 
 
80c8aa3
 
 
7d18a20
 
 
 
 
 
 
80c8aa3
7d18a20
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import gradio as gr
import py3Dmol
from Bio.PDB import *
import numpy as np
from Bio.PDB import PDBParser
import pandas as pd
import os, sys
#sys.path.append(os.getcwd())
print('importing...')
from run_gfn import run_gfn2
print('done')
# JavaScript functions
resid_hover = """function(atom,viewer) {{
    if(!atom.label) {{
        atom.label = viewer.addLabel('{0}:'+atom.atom+atom.serial,
            {{position: atom, backgroundColor: 'mintcream', fontColor:'black'}});
    }}
}}"""
hover_func = """
function(atom,viewer) {
    if(!atom.label) {
        atom.label = viewer.addLabel(atom.interaction,
            {position: atom, backgroundColor: 'black', fontColor:'white'});
    }
}"""
unhover_func = """
function(atom,viewer) {
    if(atom.label) {
        viewer.removeLabel(atom.label);
        delete atom.label;
    }
}"""

#def get_qm_atom_features(gfn2_output, checked_features):
#    qm_atom_features = {}
#    qm_atom_features['atom type'] = gfn2_output["fetchatomicprops"]["atmlist"]
#    for checked_feature in checked_features:
#        if checked_feature == 'Charge':
#            qm_atom_features['Charge'] = gfn2_output["fetchatomicprops"]["charges"]
#        if checked_feature == 'Polarizability':
#            qm_atom_features['Polarizability'] = gfn2_output["fetchatomicprops"]["polarisabilities"]   
#    return qm_atom_features

def get_qm_atom_features(gfn2_output):
    qm_atom_features = {}
    atom_list = gfn2_output["fetchatomicprops"]["atmlist"]
    charge = gfn2_output["fetchatomicprops"]["charges"]
    pol = gfn2_output["fetchatomicprops"]["polarisabilities"]
    #atom_list = atom_list.append('Molecule')
    #charge = charge.append("")
    #pol = pol.append(gfn2_output["totalpol"])
    qm_atom_features['atom type'] = atom_list
    qm_atom_features['Charge'] = charge
    qm_atom_features['Polarizability'] = pol 
    return qm_atom_features


def get_qm_mol_features(gfn2_output):
    qm_mol_features = {}
    qm_mol_features['Total Energy'] = gfn2_output["etotal"]
    qm_mol_features['Total Polarizability'] = gfn2_output["totalpol"]
  
    return qm_mol_features

def export_csv(d):
    d.to_csv("qm_atom_features.csv")
    return gr.File.update(value="qm_atom_features.csv", visible=True)

def get_basic_visualization(input_f,input_format):
    view = py3Dmol.view(width=600, height=400)
    view.setBackgroundColor('white')
    view.addModel(input_f, input_format)
    view.setStyle({'stick': {'colorscheme': {'prop': 'resi', 'C': 'turquoise'}}})
    #view.setStyle({'stick': {'colorscheme': {'prop': 'resi', 'C': '#cccccc'}},'cartoon': {'color': '#4c4e9e', 'alpha':"0.6"}})
    view.zoomTo()
    output = view._make_html().replace("'", '"')
    print('output of html', output)
    x = f"""<!DOCTYPE html><html> {output} </html>"""  # do not use ' in this input
    visualization_html = f"""<iframe  style="width: 100%; height:420px" data-ui="true" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""   
    return visualization_html

def add_spheres_feature_view(view, feature,xyz, viewnum, sizefactor, spec_color):
    normalization = max(max(feature),abs(min(feature)))
    for i in range(len(feature)):
        if feature[i]<0:
            color="#a0210f"
        else: 
            color=spec_color
        view.addSphere({'center':{
        'x':xyz[i][0], 
        'y':xyz[i][1],
        'z':xyz[i][2]},
        'radius':abs(feature[i])/normalization*sizefactor,'color':color,'alpha':1.00}, viewer=viewnum) 
    return view

def add_densities(view, dens, color, viewnum):
    view.addVolumetricData(dens, "cube", {'isoval': 0.01, 'color': color, 'opacity': 1.0}, viewer=viewnum)
    return view


def get_feature_visualization(input_f,input_format, features, xyz):
    view = py3Dmol.view(width=620, height=620, viewergrid=(2,2))
    view.setBackgroundColor('white')
    view.addModel(input_f, input_format, viewer=(0,0))
    #view.addModel(input_f, input_format, viewer=(0,1))
    #view.addModel(input_f, input_format, viewer=(1,0))
    view.setStyle({'stick': {'colorscheme': {'prop': 'resi', 'C': '#cccccc'}}}, viewer=(0,0))
    #view.setStyle({'stick': {'colorscheme': {'prop': 'resi', 'C': '#cccccc'}}}, viewer=(0,1))
    #view.setStyle({'stick': {'colorscheme': {'prop': 'resi', 'C': '#cccccc'}}}, viewer=(1,0))
    #view.setStyle({'stick': {'colorscheme': {'prop': 'resi', 'C': '#cccccc'}}}, viewer=(0,1))
    print('features', features)
    add_spheres_feature_view(view, features["fetchatomicprops"]["charges"], xyz, (0,1), 1.0, '#4c4e9e')
    add_spheres_feature_view(view, features["fetchatomicprops"]["polarisabilities"], xyz, (1,0), 1.0, '#809BAC')
    add_densities(view, open('dummy_struct_dens.cub', "r").read(), '#F7D7BE', (1,1))
    #view.setStyle({'stick': {'colorscheme': {'prop': 'resi', 'C': '#cccccc'}},'cartoon': {'color': '#4c4e9e', 'alpha':"0.6"}})
    view.zoomTo(viewer=(0,0))
    output = view._make_html().replace("'", '"')
    x = f"""<!DOCTYPE html><html> {output} </html>"""  # do not use ' in this input
    visualization_html = f"""<iframe  style="width: 100%; height:620px" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""   
    return visualization_html



def predict(input_file):
    input_f = open(input_file.name, "r").read()
    input_format = input_file.name.split('.')[-1]
    
    with open('dummy_struct.'+input_format, "w") as oF:
        oF.write(input_f)
    
    input_f2 = open('dummy_struct.'+input_format, "r").read()
    gfn2_input = ["filename","geom=dummy_struct."+input_format, 'calcdens=1']
    gfn2_output = run_gfn2(gfn2_input)


    #qm_mol_features = get_qm_mol_features(gfn2_output, checked_features)
    #basic_visualization_html = get_basic_visualization(input_f,input_format)
    feature_visualization_html = get_feature_visualization(input_f,input_format, gfn2_output, gfn2_output['xyz'])
    qm_atom_features = get_qm_atom_features(gfn2_output)

    return feature_visualization_html, pd.DataFrame(qm_atom_features)#, pd.DataFrame(qm_mol_features, index=[0])

with gr.Blocks() as demo:
    gr.Markdown("# QM property calculation")
    
    #text_input = gr.Textbox()
    #text_output = gr.Textbox()
    #text_button = gr.Button("Flip")
    
    

    with gr.Row():
        input_file = gr.File(label="Structure file for input")
        charge = gr.Textbox(placeholder="Total charge", label="Give the total charge of the input molecule. (Default=0)")
    #checked_features = gr.CheckboxGroup(["Charge", "Polarizability", "Koopman IP", "Electronic Density"], label="QM features", info="Which features shall be calculated?")
    #temperature = gr.Slider(value=300,minimum=0, maximum=1000, label="Temperature for Thermodynamics evaluation in K", step=5)

    single_btn = gr.Button(label="Run")
    with gr.Row():
        basic_html = gr.HTML()

    gr.HighlightedText(value=[("Positive Charge","Purple"),("Negative charge","red"),("Polarizability","Light blue"), ("Electronic Densities", "Beige")], color_map={"red":"#a0210f", "Light blue":"#809BAC", "Purple":"#4c4e9e", "Beige":"#F7D7BE"})

    with gr.Row():
        Dbutton = gr.Button("Download  calculated atom features")
        csv = gr.File(interactive=False, visible=False)
    with gr.Row():
        df_atom_features = gr.Dataframe()
        #df_mol_features = gr.Dataframe()

    single_btn.click(fn=predict, inputs=[input_file], outputs=[basic_html, df_atom_features])
    Dbutton.click(export_csv, df_atom_features, csv)

        


    demo.launch(server_name="0.0.0.0", server_port=7860)