stochasticribosome's picture
Set white background
09c8e65
import gradio as gr
import py3Dmol
from Bio.PDB import *
import numpy as np
from Bio.PDB import PDBParser
import pandas as pd
import torch
import os
from MDmodel import GNN_MD
import h5py
from transformMD import GNNTransformMD
# JavaScript functions
resid_hover = """function(atom,viewer) {{
if(!atom.label) {{
atom.label = viewer.addLabel('{0}:'+atom.atom+atom.serial,
{{position: atom, backgroundColor: 'mintcream', fontColor:'black'}});
}}
}}"""
hover_func = """
function(atom,viewer) {
if(!atom.label) {
atom.label = viewer.addLabel(atom.interaction,
{position: atom, backgroundColor: 'black', fontColor:'white'});
}
}"""
unhover_func = """
function(atom,viewer) {
if(atom.label) {
viewer.removeLabel(atom.label);
delete atom.label;
}
}"""
atom_mapping = {0:'H', 1:'C', 2:'N', 3:'O', 4:'F', 5:'P', 6:'S', 7:'CL', 8:'BR', 9:'I', 10: 'UNK'}
model = GNN_MD(11, 64)
state_dict = torch.load(
"best_weights_rep0.pt",
map_location=torch.device("cpu"),
)["model_state_dict"]
model.load_state_dict(state_dict)
model = model.to('cpu')
model.eval()
def get_pdb(pdb_code="", filepath=""):
try:
return filepath.name
except AttributeError as e:
if pdb_code is None or pdb_code == "":
return None
else:
os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb")
return f"{pdb_code}.pdb"
def get_offset(pdb):
pdb_multiline = pdb.split("\n")
for line in pdb_multiline:
if line.startswith("ATOM"):
return int(line[22:27])
def predict(pdb_code, pdb_file):
#path_to_pdb = get_pdb(pdb_code=pdb_code, filepath=pdb_file)
#pdb = open(path_to_pdb, "r").read()
# switch to misato env if not running from container
mdh5_file = "inference_for_md.hdf5"
md_H5File = h5py.File(mdh5_file)
column_names = ["x", "y", "z", "element"]
atoms_protein = pd.DataFrame(columns = column_names)
cutoff = md_H5File["11GS"]["molecules_begin_atom_index"][:][-1] # cutoff defines protein atoms
atoms_protein["x"] = md_H5File["11GS"]["atoms_coordinates_ref"][:][:cutoff, 0]
atoms_protein["y"] = md_H5File["11GS"]["atoms_coordinates_ref"][:][:cutoff, 1]
atoms_protein["z"] = md_H5File["11GS"]["atoms_coordinates_ref"][:][:cutoff, 2]
atoms_protein["element"] = md_H5File["11GS"]["atoms_element"][:][:cutoff]
item = {}
item["scores"] = 0
item["id"] = "11GS"
item["atoms_protein"] = atoms_protein
transform = GNNTransformMD()
data_item = transform(item)
adaptability = model(data_item)
adaptability = adaptability.detach().numpy()
data = []
for i in range(adaptability.shape[0]):
data.append([i, atom_mapping(atoms_protein.iloc[i, atoms_protein.columns.get_loc("element")] - 1), atoms_protein.iloc[i, atoms_protein.columns.get_loc("x")],atoms_protein.iloc[i, atoms_protein.columns.get_loc("y")],atoms_protein.iloc[i, atoms_protein.columns.get_loc("z")],adaptability[i]])
topN = 100
topN_ind = np.argsort(adaptability)[::-1][:topN]
pdb = open(pdb_file.name, "r").read()
view = py3Dmol.view(width=600, height=400)
view.setBackgroundColor('white')
view.addModel(pdb, "pdb")
view.setStyle({'stick': {'colorscheme': {'prop': 'resi', 'C': 'turquoise'}}})
for i in range(topN):
view.addSphere({'center':{'x':atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("x")], 'y':atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("y")],'z':atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("z")]},'radius':adaptability[topN_ind[i]]/1.5,'color':'orange','alpha':0.75})
view.zoomTo()
output = view._make_html().replace("'", '"')
x = f"""<!DOCTYPE html><html> {output} </html>""" # do not use ' in this input
return f"""<iframe style="width: 100%; height:420px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""", pd.DataFrame(data, columns=['index','element','x','y','z','Adaptability'])
callback = gr.CSVLogger()
with gr.Blocks() as demo:
gr.Markdown("# Protein Adaptability Prediction")
#text_input = gr.Textbox()
#text_output = gr.Textbox()
#text_button = gr.Button("Flip")
inp = gr.Textbox(placeholder="PDB Code or upload file below", label="Input structure")
pdb_file = gr.File(label="PDB File Upload")
#with gr.Row():
# helix = gr.ColorPicker(label="helix")
# sheet = gr.ColorPicker(label="sheet")
# loop = gr.ColorPicker(label="loop")
single_btn = gr.Button(label="Run")
with gr.Row():
html = gr.HTML()
with gr.Row():
dataframe = gr.Dataframe()
single_btn.click(fn=predict, inputs=[inp, pdb_file], outputs=[html, dataframe])
demo.launch(debug=True)