Spaces:
Runtime error
Runtime error
File size: 16,033 Bytes
265d55c a2afd48 265d55c a2afd48 265d55c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import envs
import deciders
import distillers
import prompts as task_prompts
import datetime
import time
from envs.translator import InitSummarizer, CurrSummarizer, FutureSummarizer, Translator
import gym
import pandas as pd
import random
import datetime
from loguru import logger
from argparse import Namespace
import gradio as gr
import subprocess
import openai
import os
import shutil
import subprocess
from pathlib import Path
from urllib.request import urlretrieve
def set_seed(seed):
random.seed(seed)
def main_progress(
api_type, openai_key, env_name, decider_name,
prompt_level, num_trails, seed
):
init_summarizer = env_name.split("-")[0] + '_init_translator'
curr_summarizer = env_name.split("-")[0] + '_basic_translator'
if "Represented" not in init_summarizer:
init_summarizer = init_summarizer.lower()
curr_summarizer = curr_summarizer.lower()
args = Namespace(
env_name=env_name,
init_summarizer=init_summarizer,
curr_summarizer=curr_summarizer,
decider=decider_name,
prompt_level=prompt_level,
num_trails=num_trails,
seed=seed,
future_summarizer=None,
env="base_env",
gpt_version="gpt-3.5-turbo",
render="rgb_array",
max_episode_len=200,
max_query_tokens=5000,
max_tokens=2000,
distiller="traj_distiller",
prompt_path=None,
use_short_mem=1,
short_mem_num=10,
is_only_local_obs=1,
api_type=api_type,
)
if args.api_type != "azure" and args.api_type != "openai":
raise ValueError(f"The {args.api_type} is not supported, please use 'azure' or 'openai' !")
# Please note when using "azure", the model name is gpt-35-turbo while using "openai", the model name is "gpt-3.5-turbo"
if args.api_type == "azure":
if args.gpt_version == "gpt-3.5-turbo":
args.gpt_version = 'gpt-35-turbo'
elif args.api_type == "openai":
if args.gpt_version == "gpt-35-turbo":
args.gpt_version = 'gpt-3.5-turbo'
# Get the specified translator, environment, and ChatGPT model
env_class = envs.REGISTRY[args.env]
init_summarizer = InitSummarizer(envs.REGISTRY[args.init_summarizer], args)
curr_summarizer = CurrSummarizer(envs.REGISTRY[args.curr_summarizer])
if args.future_summarizer:
future_summarizer = FutureSummarizer(
envs.REGISTRY[args.future_summarizer],
envs.REGISTRY["cart_policies"],
future_horizon=args.future_horizon,
)
else:
future_summarizer = None
decider_class = deciders.REGISTRY[args.decider]
distiller_class = distillers.REGISTRY[args.distiller]
sampling_env = envs.REGISTRY["sampling_wrapper"](gym.make(args.env_name))
if args.prompt_level == 5:
prompts_class = task_prompts.REGISTRY[(args.env_name,args.decider)]()
else:
prompts_class = task_prompts.REGISTRY[(args.decider)]()
translator = Translator(
init_summarizer, curr_summarizer, future_summarizer, env=sampling_env
)
environment = env_class(
gym.make(args.env_name, render_mode=args.render), translator
)
logfile = (
f"llm.log/output-{args.env_name}-{args.decider}-{args.gpt_version}-l{args.prompt_level}"
f"-{datetime.datetime.now().timestamp()}.log"
)
logfile_reflexion = (
f"llm.log/memory-{args.env_name}-{args.decider}-{args.gpt_version}-l{args.prompt_level}"
f"-{datetime.datetime.now().timestamp()}.log"
)
my_distiller = distiller_class(logfile=logfile_reflexion,args=args)
args.game_description = environment.game_description
args.goal_description = environment.goal_description
args.action_description = environment.action_description
args.action_desc_dict = environment.action_desc_dict
args.reward_desc_dict = environment.reward_desc_dict
logger.add(logfile, colorize=True, enqueue=True, filter=lambda x: '[Reflexion Memory]' not in x['message'])
decider = decider_class(openai_key, environment.env.action_space, args, prompts_class, my_distiller, temperature=0.0, logger=logger, max_tokens=args.max_tokens)
# Evaluate the translator
utilities = []
df = pd.read_csv('record_reflexion.csv', sep=',')
filtered_df = df[(df['env'] == args.env_name) & (df['decider'] == 'expert') & (df['level'] == 1)]
expert_score = filtered_df['avg_score'].item()
seeds = [i for i in range(1000)]
# prompt_file = "prompt.txt"
# f = open(prompt_file,"w+")
num_trails = args.num_trails
if not "Blackjack" in args.env_name:
curriculums = 1
else:
curriculums = 20
for curriculum in range(curriculums):
for trail in range(num_trails):
if "Blackjack" in args.env_name:
seed = seeds[curriculum*curriculums + num_trails - trail - 1]
else:
seed = args.seed
# single run
# Reset the environment
if not "Blackjack" in args.env_name:
set_seed(args.seed)
seed = args.seed
# Reset the environment
state_description, env_info = environment.reset(seed=args.seed)
else:
set_seed(seed)
# Reset the environment
state_description, env_info = environment.reset(seed=seed)
game_description = environment.get_game_description()
goal_description = environment.get_goal_description()
action_description = environment.get_action_description()
# Initialize the statistics
frames = []
utility = 0
current_total_tokens = 0
current_total_cost = 0
# state_description, prompt, response, action = None, None, None, None
start_time = datetime.datetime.now()
# Run the game for a maximum number of steps
for round in range(args.max_episode_len):
# Keep asking ChatGPT for an action until it provides a valid one
error_flag = True
retry_num = 1
for error_i in range(retry_num):
try:
action, prompt, response, tokens, cost = decider.act(
state_description,
action_description,
env_info,
game_description,
goal_description,
logfile
)
state_description, reward, termination, truncation, env_info = environment.step_llm(
action
)
if "Cliff" in args.env_name or "Frozen" in args.env_name:
decider.env_history.add('reward', env_info['potential_state'] + environment.reward_desc_dict[reward])
else:
decider.env_history.add('reward', f"The player get rewards {reward}.")
utility += reward
# Update the statistics
current_total_tokens += tokens
current_total_cost += cost
error_flag = False
break
except Exception as e:
print(e)
raise e
if error_i < retry_num-1:
if "Cliff" in args.env_name or "Frozen" in args.env_name:
decider.env_history.remove_invalid_state()
decider.env_history.remove_invalid_state()
if logger:
logger.debug(f"Error: {e}, Retry! ({error_i+1}/{retry_num})")
continue
if error_flag:
action = decider.default_action
state_description, reward, termination, truncation, env_info = environment.step_llm(
action
)
decider.env_history.add('action', decider.default_action)
if "Cliff" in args.env_name or "Frozen" in args.env_name:
# decider.env_history.add('reward', reward)
decider.env_history.add('reward', env_info['potential_state'] + environment.reward_desc_dict[reward])
utility += reward
logger.info(f"Seed: {seed}")
logger.info(f'The optimal action is: {decider.default_action}.')
logger.info(f"Now it is round {round}.")
else:
current_total_tokens += tokens
current_total_cost += cost
logger.info(f"Seed: {seed}")
logger.info(f"current_total_tokens: {current_total_tokens}")
logger.info(f"current_total_cost: {current_total_cost}")
logger.info(f"Now it is round {round}.")
# return results
yield environment.render(), state_description, prompt, response, action
if termination or truncation:
if logger:
logger.info(f"Terminated!")
break
time.sleep(5)
decider.env_history.add(
'terminate_state', environment.get_terminate_state(round+1, args.max_episode_len))
decider.env_history.add("cummulative_reward", str(utility))
# Record the final reward
if logger:
logger.info(f"Cummulative reward: {utility}.")
end_time = datetime.datetime.now()
time_diff = end_time - start_time
logger.info(f"Time consumer: {time_diff.total_seconds()} s")
utilities.append(utility)
# TODO: set env sucess utility threshold
if trail < num_trails -1:
if args.decider in ['reflexion']:
if utility < expert_score:
decider.update_mem()
else:
decider.update_mem()
decider.clear_mem()
return utilities
# def pause():
# for i in range(31415926):
# time.sleep(0.1)
# yield i
if __name__ == "__main__":
# Github action test 8
# install Atari ROMs
subprocess.run(['AutoROM', '--accept-license'])
# install mujoco
# Step 1: Download and set up MuJoCo
MUJOCO_URL = "https://github.com/google-deepmind/mujoco/releases/download/2.1.0/mujoco210-linux-x86_64.tar.gz"
MUJOCO_FILENAME = "mujoco210-linux-x86_64.tar.gz"
# Download MuJoCo
print("Downloading MuJoCo...")
urlretrieve(MUJOCO_URL, MUJOCO_FILENAME)
# Create and move to ~/.mujoco directory
mujoco_dir = Path.home() / ".mujoco"
mujoco_dir.mkdir(exist_ok=True)
shutil.move(MUJOCO_FILENAME, str(mujoco_dir / MUJOCO_FILENAME))
# Extract the file
print("Extracting MuJoCo...")
subprocess.run(["tar", "-zxvf", str(mujoco_dir / MUJOCO_FILENAME)], cwd=mujoco_dir)
# Edit .bashrc
bashrc_path = Path.home() / ".bashrc"
mujoco_path = mujoco_dir / "mujoco210" / "bin"
export_line = f"export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:{mujoco_path}\n"
with open(bashrc_path, "a") as bashrc_file:
bashrc_file.write(export_line)
# Set LD_LIBRARY_PATH for the current process
ld_lib_path = os.environ.get("LD_LIBRARY_PATH", "")
new_ld_lib_path = f"{ld_lib_path}{mujoco_path}"
os.environ["LD_LIBRARY_PATH"] = new_ld_lib_path
# Step 2: Install gym[mujoco]
print("Installing gym[MuJoCo]...")
subprocess.run(["pip", "install", "gym[mujoco]"])
# # Set render
os.environ["MUJOCO_GL"] = "egl"
# os.environ["DISPLAY"] = ":0"
# print(f'LD_LIBRARY_PATH: {os.environ["LD_LIBRARY_PATH"]}')
# assert os.path.exists(str(mujoco_path))
# subprocess.run("cp -r /home/user/.mujoco/mujoco210/bin/* /usr/lib/", shell=True)
# import mujoco_py
# flag = 'gpu' in str(mujoco_py.cymj).split('/')[-1]
# print(f'flag: {flag}')
# if not flag:
# ld_lib_path = os.environ.get("LD_LIBRARY_PATH", "")
# new_ld_lib_path = f"{ld_lib_path}:/usr/lib/nvidia-000"
# os.environ["LD_LIBRARY_PATH"] = new_ld_lib_path
# subprocess.run(["sudo", "mkdir", "-p", "/usr/lib/nvidia-000"])
# assert 'gpu' in str(mujoco_py.cymj).split('/')[-1]
custom_css = """
#render {
flex-grow: 1;
}
#input_text .tabs {
display: flex;
flex-direction: column;
flex-grow: 1;
}
#input_text .tabitem[style="display: block;"] {
flex-grow: 1;
display: flex !important;
}
#input_text .gap {
flex-grow: 1;
}
#input_text .form {
flex-grow: 1 !important;
}
#input_text .form > :last-child{
flex-grow: 1;
}
"""
with gr.Blocks(theme=gr.themes.Monochrome(), css=custom_css) as demo:
with gr.Row():
api_type = gr.Dropdown(["azure", "openai"], label="API Type", scale=1)
openai_key = gr.Textbox(label="OpenAI API Key", type="password", scale=3)
with gr.Row():
env_name = gr.Dropdown(
["CartPole-v0",
"LunarLander-v2",
"Acrobot-v1",
"MountainCar-v0",
"Blackjack-v1",
"Taxi-v3",
"CliffWalking-v0",
"FrozenLake-v1",
"MountainCarContinuous-v0",
"Ant-v4",
"HalfCheetah-v4",
"Hopper-v4",
"Walker2d-v4",
"Swimmer-v4",
"Reacher-v4",
"Pusher-v4",
"RepresentedBoxing-v0",
"RepresentedPong-v0",
"RepresentedMsPacman-v0",
"RepresentedMontezumaRevenge-v0"],
label="Environment Name")
decider_name = gr.Dropdown(
["naive_actor",
"cot_actor",
"spp_actor",
"reflexion_actor"],
label="Decider")
# prompt_level = gr.Dropdown([1, 2, 3, 4, 5], label="Prompt Level")
# TODO: support more prompt levels
prompt_level = gr.Dropdown([1, 3], label="Prompt Level")
with gr.Row():
num_trails = gr.Slider(1, 100, 1, label="Number of Trails", scale=2)
seed = gr.Slider(1, 1000, 1, label="Seed", scale=2)
run = gr.Button("Run", scale=1)
# pause_ = gr.Button("Pause")
# resume = gr.Button("Resume")
stop = gr.Button("Stop", scale=1)
with gr.Row():
with gr.Column():
render = gr.Image(label="render", elem_id="render")
with gr.Column(elem_id="input_text"):
state = gr.Textbox(label="translated state")
prompt = gr.Textbox(label="prompt", max_lines=20)
with gr.Row():
response = gr.Textbox(label="response")
action = gr.Textbox(label="parsed action")
run_event = run.click(
fn=main_progress,
inputs=[
api_type, openai_key, env_name,
decider_name, prompt_level, num_trails, seed],
outputs=[render, state, prompt, response, action])
stop.click(fn=None, inputs=None, outputs=None, cancels=[run_event])
# pause_event = pause_.click(fn=pause, inputs=None, outputs=None)
# resume.click(fn=None, inputs=None, outputs=None, cancels=[pause_event])
demo.launch() |