Spaces:
Sleeping
Sleeping
Upload 9 files
Browse files- README.md +42 -12
- app.py +92 -0
- docs/README_ES.md +35 -0
- docs/README_PT.md +42 -0
- environment-cpu.yml +14 -0
- environment-cuda.yml +16 -0
- requirements.txt +5 -0
- src/__init__.py +0 -0
- src/transcription_utils.py +176 -0
README.md
CHANGED
@@ -1,12 +1,42 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# **WhisperX Local Installation Kit**
|
2 |
+
|
3 |
+
## **Description**
|
4 |
+
|
5 |
+
This project enables the local installation and use of WhisperX, an advanced audio transcription system based on OpenAI's Whisper but optimized for running on local hardware with or without a GPU. This project is made possible thanks to [Whisperx](https://github.com/m-bain/whisperX) and [Faster Whisper](https://github.com/SYSTRAN/faster-whisper). This document provides a general overview of the installation and links to the website where the [complete installation and usage](https://mistercontenidos.com/en/how-to-install-whisperx-locally) procedure for this project can be found.
|
6 |
+
|
7 |
+
## **Requirements**
|
8 |
+
|
9 |
+
- Miniconda
|
10 |
+
- CUDA (only for NVIDIA GPU users)
|
11 |
+
|
12 |
+
## **File Description**
|
13 |
+
|
14 |
+
- **`environment-cuda.yml`**: Configuration file for automatic installation on systems with NVIDIA GPU.
|
15 |
+
- **`environment-cpu.yml`**: Configuration file for automatic installation on systems without NVIDIA GPU.
|
16 |
+
- **`app.py`**: Script to run the WhisperX user interface on Gradio.
|
17 |
+
- **`transcription_utils.py`**: Transcription logic.
|
18 |
+
|
19 |
+
## **Installation**
|
20 |
+
|
21 |
+
1. **Miniconda**: [Miniconda Installation](https://docs.anaconda.com/free/miniconda/)
|
22 |
+
2. **CUDA**: [CUDA Installation](https://developer.nvidia.com/cuda-toolkit-archive) (Only for NVIDIA GPU users)
|
23 |
+
3. **GitHub Repository**: Download and setup of the repository. See details on our website.
|
24 |
+
|
25 |
+
For a detailed step-by-step installation process, please visit our website: [View complete installation process](https://mistercontenidos.com/en/how-to-install-whisperx-locally)
|
26 |
+
|
27 |
+
## **Usage**
|
28 |
+
|
29 |
+
To use WhisperX after completing the installation:
|
30 |
+
|
31 |
+
1. Activate the corresponding Conda environment.
|
32 |
+
2. Run **`python app.py`** to start the Gradio user interface.
|
33 |
+
|
34 |
+
## **Authors**
|
35 |
+
|
36 |
+
- [MISTER CONTENTS](https://mistercontenidos.com/)
|
37 |
+
- [Ricardo Gonzalez](https://www.linkedin.com/in/pedrocuervomkt/)
|
38 |
+
|
39 |
+
## **Languages**
|
40 |
+
|
41 |
+
- [Spanish](docs/README_ES.md)
|
42 |
+
- [Portuguese](docs/README_PT.md)
|
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import time
|
4 |
+
import os
|
5 |
+
from src.transcription_utils import transcribe, language_options, model_options, ModelManager
|
6 |
+
|
7 |
+
class TranscriptionApp:
|
8 |
+
def __init__(self):
|
9 |
+
"""
|
10 |
+
Initializes an instance with a ModelManager for managing AI models,
|
11 |
+
sets default device and model based on CUDA availability,
|
12 |
+
and prepares a Gradio app and outputs dictionary for UI interactions and storing results.
|
13 |
+
"""
|
14 |
+
self.model_manager = ModelManager()
|
15 |
+
self.default_device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
self.default_model = "Large-v2" if torch.cuda.is_available() else "Medium"
|
17 |
+
self.app = gr.Blocks()
|
18 |
+
self.outputs = {}
|
19 |
+
self.last_transcription_time = 0
|
20 |
+
|
21 |
+
# Crear carpeta Temp si no existe
|
22 |
+
if not os.path.exists('Temp'):
|
23 |
+
os.makedirs('Temp')
|
24 |
+
|
25 |
+
def start_transcription(self, file, device, language, model):
|
26 |
+
"""Start transcription process."""
|
27 |
+
start_time = time.time()
|
28 |
+
|
29 |
+
try:
|
30 |
+
results = transcribe(file, device, language, model, self.model_manager)
|
31 |
+
except ValueError as e:
|
32 |
+
return str(e), 0
|
33 |
+
|
34 |
+
end_time = time.time()
|
35 |
+
self.last_transcription_time = round(end_time - start_time, 1)
|
36 |
+
|
37 |
+
if results:
|
38 |
+
json_output, txt_path, vtt_path, srt_path = results
|
39 |
+
self.outputs = {
|
40 |
+
'TXT': txt_path,
|
41 |
+
'SRT': srt_path,
|
42 |
+
'JSON': json_output,
|
43 |
+
'VTT': vtt_path
|
44 |
+
}
|
45 |
+
return self.update_output_text('TXT'), self.last_transcription_time
|
46 |
+
return "No transcription available.", self.last_transcription_time
|
47 |
+
|
48 |
+
|
49 |
+
def update_output_text(self, format_choice):
|
50 |
+
"""Update the text area based on the format choice."""
|
51 |
+
if format_choice and self.outputs.get(format_choice):
|
52 |
+
file_path = self.outputs[format_choice]
|
53 |
+
try:
|
54 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
55 |
+
return file.read()
|
56 |
+
except FileNotFoundError:
|
57 |
+
return "File not found."
|
58 |
+
return "No file available or format not selected."
|
59 |
+
|
60 |
+
# User interface for the transcription kit using Gradio
|
61 |
+
def setup_ui(self):
|
62 |
+
with self.app:
|
63 |
+
gr.Markdown("# Kit Transcriptor Whisperx")
|
64 |
+
gr.Markdown("❤️ Follow us on [YouTube](https://www.youtube.com/channel/UC_YzjCh-CSSCSGANvt5wBNQ?sub_confirmation=1), [GitHub](https://github.com/rgcodeai) 🌐 More on [Mister Contenidos](https://mistercontenidos.com)")
|
65 |
+
with gr.Row():
|
66 |
+
with gr.Column():
|
67 |
+
gr.Markdown("### Supported Formats: Audio (mp3, wav) and Video (mp4, avi, mov, flv)")
|
68 |
+
file_input = gr.File(label="Upload your multimedia file", type="filepath")
|
69 |
+
device_dropdown = gr.Dropdown(label="Select device", choices=["cuda", "cpu"], value=self.default_device)
|
70 |
+
model_dropdown = gr.Dropdown(label="Select model", choices=list(model_options.keys()), value=self.default_model)
|
71 |
+
language_dropdown = gr.Dropdown(label="Select language", choices=list(language_options.keys()), value="Identify")
|
72 |
+
transcribe_button = gr.Button("Start Transcription")
|
73 |
+
|
74 |
+
with gr.Column():
|
75 |
+
transcription_time_display = gr.Textbox(label="Last Transcription Time (seconds)", interactive=False, lines=1)
|
76 |
+
format_choice = gr.Radio(['TXT', 'SRT', 'VTT', 'JSON'], label="Select format to view:", value='TXT')
|
77 |
+
output_text = gr.Textbox(label="File Content", interactive=False, lines=10)
|
78 |
+
download_button = gr.Button("Download Transcription")
|
79 |
+
format_choice.change(fn=self.update_output_text, inputs=format_choice, outputs=output_text, queue=True)
|
80 |
+
download_button.click(fn=lambda x: self.outputs.get(x), inputs=format_choice, outputs=gr.File())
|
81 |
+
|
82 |
+
transcribe_button.click(fn=self.start_transcription, inputs=[file_input, device_dropdown, language_dropdown, model_dropdown], outputs=[output_text, transcription_time_display])
|
83 |
+
|
84 |
+
def launch(self):
|
85 |
+
"""Launch the transcription application."""
|
86 |
+
self.setup_ui()
|
87 |
+
self.app.launch()
|
88 |
+
|
89 |
+
|
90 |
+
if __name__ == '__main__':
|
91 |
+
app = TranscriptionApp()
|
92 |
+
app.launch()
|
docs/README_ES.md
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# WhisperX Local Installation Kit
|
2 |
+
|
3 |
+
## Descripción
|
4 |
+
Este proyecto permite la instalación y uso local de WhisperX, un avanzado transcriptor de audio basado en OpenAI Whisper pero optimizado para ejecución en hardware local con o sin GPU. Este proyecyo es posible gracias a [Whisperx](https://github.com/m-bain/whisperX) y [Faster Whisper](https://github.com/SYSTRAN/faster-whisper). En este documento se ofrece una descripción general de la instalación y la referencia al sitio web donde se encuentra el [procedimiento completo de instalación y uso](https://mistercontenidos.com/como-instalar-whisperx-en-local) de este proyecto.
|
5 |
+
## Rrequisitos
|
6 |
+
- Miniconda
|
7 |
+
- CUDA (solo para usuarios con GPU NVIDIA)
|
8 |
+
|
9 |
+
## Descripción de los archivos
|
10 |
+
- `environment-cuda.yml`: Archivo de configuración para la instalación automática en sistemas con GPU NVIDIA.
|
11 |
+
- `environment-cpu.yml`: Archivo de configuración para la instalación automática en sistemas sin GPU NVIDIA.
|
12 |
+
- `app.py`: Script para ejecutar la interfaz de usuario de WhisperX en Gradio.
|
13 |
+
- `transcription_utils.py`: Logica de trascripción.
|
14 |
+
|
15 |
+
## Instalación
|
16 |
+
|
17 |
+
1. **Miniconda**: [Instalación de Miniconda](https://docs.anaconda.com/free/miniconda/)
|
18 |
+
2. **CUDA**: [Instalación de CUDA](https://developer.nvidia.com/cuda-toolkit-archive) (Solo para usuarios con GPU NVIDIA)
|
19 |
+
3. **Repositorio de GitHub**: Descarga y configuración del repositorio. Ver detalles en nuestro sitio web.
|
20 |
+
|
21 |
+
Para un proceso de instalación detallado paso a paso, por favor visita nuestra página web: [Ver proceso de instalación completo](https://mistercontenidos.com/como-instalar-whisperx-en-local)
|
22 |
+
|
23 |
+
## Uso
|
24 |
+
Para usar WhisperX después de completar la instalación:
|
25 |
+
1. Activar el entorno Conda correspondiente.
|
26 |
+
2. Ejecutar `python app.py` para iniciar la interfaz de usuario de Gradio.
|
27 |
+
|
28 |
+
## Autores
|
29 |
+
- [MISTER CONTENIDOS](https://mistercontenidos.com/)
|
30 |
+
- [Ricardo Gonzalez](https://www.linkedin.com/in/pedrocuervomkt/)
|
31 |
+
|
32 |
+
## Languages
|
33 |
+
|
34 |
+
- [Ingles](README.md)
|
35 |
+
- [Português](docs/README_PT.md)
|
docs/README_PT.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# **Kit de Instalação Local WhisperX**
|
2 |
+
|
3 |
+
## **Descrição**
|
4 |
+
|
5 |
+
Este projeto possibilita a instalação e uso local do WhisperX, um avançado sistema de transcrição de áudio baseado no OpenAI Whisper, mas otimizado para execução em hardware local com ou sem GPU. Este projeto é possível graças ao [Whisperx](https://github.com/m-bain/whisperX) e ao [Faster Whisper](https://github.com/SYSTRAN/faster-whisper). Este documento oferece uma visão geral da instalação e o link para o site onde está disponível o [procedimento completo de instalação e uso deste projeto.](https://mistercontenidos.com/pt/como-instalar-o-whisperx-localmente)
|
6 |
+
|
7 |
+
## **Requisitos**
|
8 |
+
|
9 |
+
- Miniconda
|
10 |
+
- CUDA (apenas para usuários com GPU NVIDIA)
|
11 |
+
|
12 |
+
## **Descrição dos Arquivos**
|
13 |
+
|
14 |
+
- **`environment-cuda.yml`**: Arquivo de configuração para instalação automática em sistemas com GPU NVIDIA.
|
15 |
+
- **`environment-cpu.yml`**: Arquivo de configuração para instalação automática em sistemas sem GPU NVIDIA.
|
16 |
+
- **`app.py`**: Script para executar a interface de usuário do WhisperX no Gradio.
|
17 |
+
- **`transcription_utils.py`**: Lógica de transcrição.
|
18 |
+
|
19 |
+
## **Instalação**
|
20 |
+
|
21 |
+
1. **Miniconda**: [Instalação do Miniconda](https://docs.anaconda.com/free/miniconda/)
|
22 |
+
2. **CUDA**: [Instalação do CUDA](https://developer.nvidia.com/cuda-toolkit-archive) (Apenas para usuários com GPU NVIDIA)
|
23 |
+
3. **Repositório do GitHub**: Download e configuração do repositório. Veja detalhes em nosso site.
|
24 |
+
|
25 |
+
Para um processo de instalação detalhado passo a passo, por favor visite nosso site: [Ver processo de instalação completo](https://mistercontenidos.com/pt/como-instalar-o-whisperx-localmente)
|
26 |
+
|
27 |
+
## **Uso**
|
28 |
+
|
29 |
+
Para usar o WhisperX após completar a instalação:
|
30 |
+
|
31 |
+
1. Ative o ambiente Conda correspondente.
|
32 |
+
2. Execute **`python app.py`** para iniciar a interface de usuário do Gradio.
|
33 |
+
|
34 |
+
## **Autores**
|
35 |
+
|
36 |
+
- [MISTER CONTEÚDOS](https://mistercontenidos.com/)
|
37 |
+
- [Ricardo Gonzalez](https://www.linkedin.com/in/pedrocuervomkt/)
|
38 |
+
|
39 |
+
## **Idiomas**
|
40 |
+
|
41 |
+
- [Inglês](README.md)
|
42 |
+
- [Português](docs/pt/README_PT.md)
|
environment-cpu.yml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: whisperx-web-ui
|
2 |
+
channels:
|
3 |
+
- defaults
|
4 |
+
- conda-forge
|
5 |
+
- pytorch
|
6 |
+
dependencies:
|
7 |
+
- python=3.10
|
8 |
+
- pytorch=2.0.0
|
9 |
+
- torchaudio=2.0.0
|
10 |
+
- conda-forge::gradio
|
11 |
+
- conda-forge::ffmpeg
|
12 |
+
- pip
|
13 |
+
- pip:
|
14 |
+
- whisperx
|
environment-cuda.yml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: whisperx-web-ui
|
2 |
+
channels:
|
3 |
+
- defaults
|
4 |
+
- conda-forge
|
5 |
+
- pytorch
|
6 |
+
- nvidia
|
7 |
+
dependencies:
|
8 |
+
- python=3.10
|
9 |
+
- pytorch=2.0.0
|
10 |
+
- torchaudio=2.0.0
|
11 |
+
- pytorch-cuda=11.8
|
12 |
+
- conda-forge::gradio
|
13 |
+
- conda-forge::ffmpeg
|
14 |
+
- pip
|
15 |
+
- pip:
|
16 |
+
- whisperx
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.0.0+cu118 -f https://download.pytorch.org/whl/torch_stable.html
|
2 |
+
torchaudio==2.0.0 -f https://download.pytorch.org/whl/torch_stable.html
|
3 |
+
gradio
|
4 |
+
ffmpeg
|
5 |
+
whisperx
|
src/__init__.py
ADDED
File without changes
|
src/transcription_utils.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisperx
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
import mimetypes
|
6 |
+
import shutil
|
7 |
+
|
8 |
+
# Define language options
|
9 |
+
language_options = {
|
10 |
+
"Identify": None,
|
11 |
+
"English": "en", "Spanish": "es", "Chinese": "zh", "Hindi": "hi", "Arabic": "ar",
|
12 |
+
"Portuguese": "pt", "Bengali": "bn", "Russian": "ru", "Japanese": "ja", "Punjabi": "pa",
|
13 |
+
"German": "de", "Javanese": "jv", "Wu Chinese": "zh", "Malay": "ms", "Telugu": "te",
|
14 |
+
"Vietnamese": "vi", "Korean": "ko", "French": "fr", "Marathi": "mr", "Turkish": "tr"
|
15 |
+
}
|
16 |
+
|
17 |
+
# Available models for transcription
|
18 |
+
model_options = {
|
19 |
+
"Large-v2": "large-v2",
|
20 |
+
"Medium": "medium",
|
21 |
+
"Small": "small",
|
22 |
+
"Base": "base"
|
23 |
+
}
|
24 |
+
|
25 |
+
# Initializes the ModelManager by setting default values and loading a model based on system capabilities (CUDA availability).
|
26 |
+
class ModelManager:
|
27 |
+
def __init__(self):
|
28 |
+
self.current_model = None
|
29 |
+
self.current_model_name = None
|
30 |
+
self.current_device = None
|
31 |
+
if torch.cuda.is_available():
|
32 |
+
default_device = "cuda"
|
33 |
+
default_model = "Large-v2"
|
34 |
+
else:
|
35 |
+
default_device = "cpu"
|
36 |
+
default_model = "Medium"
|
37 |
+
self.load_model(default_model, default_device)
|
38 |
+
|
39 |
+
def load_model(self, model_choice, device):
|
40 |
+
if self.current_model is None or model_choice != self.current_model_name or device != self.current_device:
|
41 |
+
print(f"Attempting to load model: {model_choice} on device: {device}")
|
42 |
+
compute_type = "float32" if device == "cpu" else "float16"
|
43 |
+
self.current_model = whisperx.load_model(model_options[model_choice], device, compute_type=compute_type)
|
44 |
+
self.current_model_name = model_choice
|
45 |
+
self.current_device = device
|
46 |
+
else:
|
47 |
+
print(f"Using already loaded model: {self.current_model_name} on device: {self.current_device}")
|
48 |
+
return self.current_model
|
49 |
+
|
50 |
+
# Validates if the given file path corresponds to a multimedia file (audio or video) by checking MIME types and specific file extensions.
|
51 |
+
def validate_multimedia_file(file_path):
|
52 |
+
file_path = os.path.normpath(file_path)
|
53 |
+
mime_type, _ = mimetypes.guess_type(file_path)
|
54 |
+
if mime_type and (mime_type.startswith('audio') or mime_type.startswith('video')):
|
55 |
+
return file_path
|
56 |
+
else:
|
57 |
+
if file_path.lower().endswith(('.mp3', '.mp4', '.wav', '.avi', '.mov', '.flv')):
|
58 |
+
return file_path
|
59 |
+
else:
|
60 |
+
raise ValueError("The uploaded file is not a multimedia file. Please upload an appropriate audio or video file.")
|
61 |
+
|
62 |
+
# Transcribes a multimedia file
|
63 |
+
def transcribe(file_obj, device, language, model_choice, model_manager):
|
64 |
+
"""
|
65 |
+
Transcribes a multimedia file using a specified model, handling file operations,
|
66 |
+
language identification, and transcription alignment, and outputs transcription in multiple formats.
|
67 |
+
"""
|
68 |
+
_, ext = os.path.splitext(file_obj.name)
|
69 |
+
temp_dir = os.path.join(os.getcwd(), 'Temp')
|
70 |
+
|
71 |
+
if not os.path.exists(temp_dir):
|
72 |
+
os.makedirs(temp_dir)
|
73 |
+
new_file_path = os.path.join(temp_dir, f'resource{ext}')
|
74 |
+
|
75 |
+
shutil.copy(file_obj.name, new_file_path)
|
76 |
+
|
77 |
+
model = model_manager.load_model(model_choice, device)
|
78 |
+
|
79 |
+
validated_file_path = validate_multimedia_file(new_file_path)
|
80 |
+
audio = whisperx.load_audio(validated_file_path)
|
81 |
+
|
82 |
+
if language == "Identify":
|
83 |
+
result = model.transcribe(audio)
|
84 |
+
language_code = result["language"]
|
85 |
+
else:
|
86 |
+
language_code = language_options[language]
|
87 |
+
result = model.transcribe(audio, language=language_code)
|
88 |
+
|
89 |
+
model_a, metadata = whisperx.load_align_model(language_code=language_code, device=device)
|
90 |
+
try:
|
91 |
+
aligned_segments = []
|
92 |
+
for segment in result["segments"]:
|
93 |
+
aligned_segment = whisperx.align([segment], model_a, metadata, audio, device, return_char_alignments=False)
|
94 |
+
aligned_segments.extend(aligned_segment["segments"])
|
95 |
+
except Exception as e:
|
96 |
+
print(f"Error during alignment: {e}")
|
97 |
+
return None
|
98 |
+
|
99 |
+
segments_output = {"segments": aligned_segments}
|
100 |
+
json_output = json.dumps(segments_output, ensure_ascii=False, indent=4)
|
101 |
+
json_file_path = download_json_interface(json_output, temp_dir)
|
102 |
+
txt_path = save_as_text(aligned_segments, temp_dir)
|
103 |
+
vtt_path = save_as_vtt(aligned_segments, temp_dir)
|
104 |
+
srt_path = save_as_srt(aligned_segments, temp_dir)
|
105 |
+
return json_file_path, txt_path, vtt_path, srt_path
|
106 |
+
|
107 |
+
# Saves the transcription text of audio segments to a file in the specified temporary directory and returns the file path.
|
108 |
+
def save_as_text(segments, temp_dir):
|
109 |
+
txt_file_path = os.path.join(temp_dir, 'transcription_output.txt')
|
110 |
+
with open(txt_file_path, 'w', encoding='utf-8') as txt_file:
|
111 |
+
for segment in segments:
|
112 |
+
txt_file.write(f"{segment['text'].strip()}\n")
|
113 |
+
return txt_file_path
|
114 |
+
|
115 |
+
|
116 |
+
def save_as_vtt(segments, temp_dir):
|
117 |
+
"""
|
118 |
+
Saves the transcription text as a .vtt file (Web Video Text Tracks format),
|
119 |
+
which includes timestamps for each segment, in the specified temporary directory and returns the file path.
|
120 |
+
"""
|
121 |
+
vtt_file_path = os.path.join(temp_dir, 'transcription_output.vtt')
|
122 |
+
with open(vtt_file_path, 'w', encoding='utf-8') as vtt_file:
|
123 |
+
vtt_file.write("WEBVTT\n\n")
|
124 |
+
for i, segment in enumerate(segments):
|
125 |
+
start = segment['start']
|
126 |
+
end = segment['end']
|
127 |
+
vtt_file.write(f"{i}\n")
|
128 |
+
vtt_file.write(f"{format_time(start)} --> {format_time(end)}\n")
|
129 |
+
vtt_file.write(f"{segment['text'].strip()}\n\n")
|
130 |
+
return vtt_file_path
|
131 |
+
|
132 |
+
def download_json_interface(json_data, temp_dir):
|
133 |
+
"""
|
134 |
+
Reads JSON-formatted transcription data, modifies and re-saves it in a neatly
|
135 |
+
formatted JSON file in the specified temporary directory, and returns the file path.
|
136 |
+
"""
|
137 |
+
json_file_path = os.path.join(temp_dir, 'transcription_output.json')
|
138 |
+
with open(json_file_path, 'w', encoding='utf-8') as json_file:
|
139 |
+
json_data = json.loads(json_data)
|
140 |
+
for segment in json_data['segments']:
|
141 |
+
segment['text'] = segment['text'].strip()
|
142 |
+
json_data = json.dumps(json_data, ensure_ascii=False, indent=4)
|
143 |
+
json_file.write(json_data)
|
144 |
+
return json_file_path
|
145 |
+
|
146 |
+
|
147 |
+
def save_as_srt(segments, temp_dir):
|
148 |
+
"""
|
149 |
+
Saves the transcription text as an .srt file (SubRip Subtitle format),
|
150 |
+
which includes numbered entries with start and end times and corresponding text for each segment,
|
151 |
+
in the specified temporary directory and returns the file path.
|
152 |
+
"""
|
153 |
+
srt_file_path = os.path.join(temp_dir, 'transcription_output.srt')
|
154 |
+
with open(srt_file_path, 'w', encoding='utf-8') as srt_file:
|
155 |
+
for i, segment in enumerate(segments):
|
156 |
+
start = segment['start']
|
157 |
+
end = segment['end']
|
158 |
+
srt_file.write(f"{i+1}\n")
|
159 |
+
srt_file.write(f"{format_time_srt(start)} --> {format_time_srt(end)}\n")
|
160 |
+
srt_file.write(f"{segment['text'].strip()}\n\n")
|
161 |
+
return srt_file_path
|
162 |
+
|
163 |
+
# Converts a time value in seconds to a formatted string in the "hours:minutes:seconds,milliseconds" format, used for timestamps in VTT files.
|
164 |
+
def format_time(time_in_seconds):
|
165 |
+
hours = int(time_in_seconds // 3600)
|
166 |
+
minutes = int((time_in_seconds % 3600) // 60)
|
167 |
+
seconds = time_in_seconds % 60
|
168 |
+
return f"{hours:02}:{minutes:02}:{seconds:06.3f}"
|
169 |
+
|
170 |
+
# Converts a time value in seconds to a formatted string suitable for SRT files, specifically in the "hours:minutes:seconds,milliseconds" format.
|
171 |
+
def format_time_srt(time_in_seconds):
|
172 |
+
hours = int(time_in_seconds // 3600)
|
173 |
+
minutes = int((time_in_seconds % 3600) // 60)
|
174 |
+
seconds = int(time_in_seconds % 60)
|
175 |
+
milliseconds = int((time_in_seconds - int(time_in_seconds)) * 1000)
|
176 |
+
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
|