Luke commited on
Commit
0347dd6
·
1 Parent(s): 633cf99

no message

Browse files
Plan/pytesseractJsOCR.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import subprocess
2
+
3
+ from IdentifyModel.cardModel import parse_id_card
4
+ from Plan.AiLLM import extract_entities
5
+
6
+
7
+ def pytesseractJs_recognition(validation_type, image, temp_path, file_name, language):
8
+ try:
9
+ # 使用 subprocess 執行 JavaScript 代碼,傳遞語言參數
10
+ subprocess.run(['node', 'pytesseractJsOCR.js', image, language, temp_path + file_name],
11
+ capture_output=True,
12
+ text=True)
13
+ with open(temp_path + file_name, 'r') as file:
14
+ out_ocr_text = file.read()
15
+ entities = extract_entities(out_ocr_text)
16
+ return parse_id_card(out_ocr_text, validation_type, entities)
17
+ except Exception as e:
18
+ return str(e)
Preprocess/preprocessImg.py CHANGED
@@ -36,6 +36,7 @@ def preprocess_image001(image):
36
  denoised = cv2.fastNlMeansDenoising(binary, None, 30, 7, 21)
37
  return Image.fromarray(denoised)
38
 
 
39
  # 方案二
40
  def preprocess_image002(image):
41
  # 將 PIL Image 轉換為 numpy array
 
36
  denoised = cv2.fastNlMeansDenoising(binary, None, 30, 7, 21)
37
  return Image.fromarray(denoised)
38
 
39
+
40
  # 方案二
41
  def preprocess_image002(image):
42
  # 將 PIL Image 轉換為 numpy array
app.py CHANGED
@@ -1,6 +1,11 @@
1
  import os
 
 
 
2
  import gradio as gr
 
3
  from Plan.AiLLM import llm_recognition
 
4
  from Plan.pytesseractOCR import ocr_recognition
5
  from Preprocess.preprocessImg import PreprocessImg
6
 
@@ -28,8 +33,8 @@ def preprocess_image(image):
28
  # pytesseract OCR
29
  def Basic_ocr(valid_type, language, preprocessed_images, finish_pre_img):
30
  if not finish_pre_img:
31
- gr.Warning("請先完成圖像預處理!")
32
- raise ValueError("請先完成圖像預處理!")
33
 
34
  # 方案一
35
  ocr_result_001 = ocr_recognition(preprocessed_images[0], valid_type, language)
@@ -48,8 +53,8 @@ def Basic_ocr(valid_type, language, preprocessed_images, finish_pre_img):
48
  # AI LLM OCR
49
  def AiLLM_ocr(valid_type, language, preprocessed_images, finish_pre_img):
50
  if not finish_pre_img:
51
- gr.Warning("請先完成圖像預處理!")
52
- raise ValueError("請先完成圖像預處理!")
53
 
54
  # 方案一
55
  llm_result_001 = llm_recognition(preprocessed_images[0], valid_type, language)
@@ -65,17 +70,65 @@ def AiLLM_ocr(valid_type, language, preprocessed_images, finish_pre_img):
65
  return llm_result_001, llm_result_002, llm_result_003, llm_result_004, llm_result_005
66
 
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  # VIEW
69
  with gr.Blocks() as demo:
70
  with gr.Row():
71
  image_input = gr.Image(type="pil", label="上傳圖片")
72
- validation_type = gr.Dropdown(choices=["純文字", "身分證正面", "身分證反面"], label="驗證類別")
73
- language_dropdown = gr.Dropdown(choices=languages, value="chi_tra", label="語言")
74
-
75
- with gr.Row():
76
- preImg_button = gr.Button("圖片預先處理")
77
-
78
  with gr.Row():
 
 
 
 
79
  with gr.Column():
80
  ocr_button = gr.Button("使用 Pytesseract OCR 辨識")
81
  gr.Markdown(
@@ -84,28 +137,40 @@ with gr.Blocks() as demo:
84
  llm_button = gr.Button("使用 AI LLM 模型辨識")
85
  gr.Markdown(
86
  "<div style='display: flex;justify-content: center;align-items: center;background-color: red;font-weight: bold;text-decoration: underline;font-size: 20px;'>Package:Bert-base-chinese</div>")
 
 
 
 
87
 
88
  with gr.Row():
89
  preprocess_output_001 = gr.Image(type="pil", label="預處理後的圖片-方案一")
90
  ocr_output_001 = gr.JSON(label="OCR-001-解析結果")
91
  llm_output_001 = gr.JSON(label="AiLLM-001-解析結果")
 
 
92
  with gr.Row():
93
  preprocess_output_002 = gr.Image(type="pil", label="預處理後的圖片-方案二")
94
  ocr_output_002 = gr.JSON(label="OCR-002-解析結果")
95
  llm_output_002 = gr.JSON(label="AiLLM-002-解析結果")
 
96
 
97
  with gr.Row():
98
  preprocess_output_003 = gr.Image(type="pil", label="預處理後的圖片-方案三")
99
  ocr_output_003 = gr.JSON(label="OCR-003-解析結果")
100
  llm_output_003 = gr.JSON(label="AiLLM-003-解析結果")
 
 
101
  with gr.Row():
102
  preprocess_output_004 = gr.Image(type="pil", label="預處理後的圖片-方案四")
103
  ocr_output_004 = gr.JSON(label="OCR-004-解析結果")
104
  llm_output_004 = gr.JSON(label="AiLLM-004-解析結果")
 
 
105
  with gr.Row():
106
  preprocess_output_005 = gr.Image(type="pil", label="預處理後的圖片-方案五")
107
  ocr_output_005 = gr.JSON(label="OCR-005-解析結果")
108
  llm_output_005 = gr.JSON(label="AiLLM-005-解析結果")
 
109
 
110
  # 定義狀態
111
  finish_pre_img_state = gr.State(False)
@@ -126,4 +191,10 @@ with gr.Blocks() as demo:
126
  preprocessed_images_state, finish_pre_img_state],
127
  outputs=[llm_output_001, llm_output_002, llm_output_003, llm_output_004, llm_output_005])
128
 
 
 
 
 
 
 
129
  demo.launch(share=False)
 
1
  import os
2
+ import subprocess
3
+ from datetime import datetime
4
+
5
  import gradio as gr
6
+
7
  from Plan.AiLLM import llm_recognition
8
+ from Plan.pytesseractJsOCR import pytesseractJs_recognition
9
  from Plan.pytesseractOCR import ocr_recognition
10
  from Preprocess.preprocessImg import PreprocessImg
11
 
 
33
  # pytesseract OCR
34
  def Basic_ocr(valid_type, language, preprocessed_images, finish_pre_img):
35
  if not finish_pre_img:
36
+ gr.Warning("請先執行圖像預處理,再進行分析!")
37
+ raise ValueError("請先執行圖像預處理,再進行分析!")
38
 
39
  # 方案一
40
  ocr_result_001 = ocr_recognition(preprocessed_images[0], valid_type, language)
 
53
  # AI LLM OCR
54
  def AiLLM_ocr(valid_type, language, preprocessed_images, finish_pre_img):
55
  if not finish_pre_img:
56
+ gr.Warning("請先執行圖像預處理,再進行分析!")
57
+ raise ValueError("請先執行圖像預處理,再進行分析!")
58
 
59
  # 方案一
60
  llm_result_001 = llm_recognition(preprocessed_images[0], valid_type, language)
 
70
  return llm_result_001, llm_result_002, llm_result_003, llm_result_004, llm_result_005
71
 
72
 
73
+ def pytesseractJs_ocr(valid_type, language, preprocessed_images, finish_pre_img):
74
+ if not finish_pre_img:
75
+ gr.Warning("請先執行圖像預處理,再進行分析!")
76
+ raise ValueError("請先執行圖像預處理,再進行分析!")
77
+
78
+ temp_path = 'TempFile/' + datetime.now().strftime('%Y%m%d_%H%M%S') + '/'
79
+ # 檢查目錄是否存在,如果不存在則建立
80
+ if not os.path.exists(temp_path):
81
+ os.makedirs(temp_path)
82
+
83
+ image_files = []
84
+ for i, image in enumerate(preprocessed_images):
85
+ filename = temp_path + f'preprocessed_image_{i}.png'
86
+ image.save(filename)
87
+ image_files.append(filename)
88
+
89
+ # 方案一
90
+ file_name = 'out_pytesseractJs_result_1.txt'
91
+ out_ocr_text_001 = pytesseractJs_recognition(valid_type, image_files[0], temp_path, file_name, language)
92
+
93
+ # 方案二
94
+ file_name = 'out_pytesseractJs_result_2.txt'
95
+ out_ocr_text_002 = pytesseractJs_recognition(valid_type, image_files[1], temp_path, file_name, language)
96
+
97
+ # file_name = 'out_pytesseractJs_result_2.txt'
98
+ # 使用 subprocess 執行 JavaScript 代碼,傳遞語言參數
99
+ # subprocess.run(['node', 'pytesseractJsOCR.js', image_files[1], language, temp_path + file_name], capture_output=True,
100
+ # text=True)
101
+ # with open(temp_path + file_name, 'r') as file:
102
+ # out_ocr_text_002 = file.read()
103
+
104
+ # 方案三
105
+ file_name = 'out_pytesseractJs_result_3.txt'
106
+ out_ocr_text_003 = pytesseractJs_recognition(valid_type, image_files[2], temp_path, file_name, language)
107
+
108
+ # 方案四
109
+ file_name = 'out_pytesseractJs_result_4.txt'
110
+ out_ocr_text_004 = pytesseractJs_recognition(valid_type, image_files[3], temp_path, file_name, language)
111
+
112
+ # 方案五
113
+ file_name = 'out_pytesseractJs_result_5.txt'
114
+ out_ocr_text_005 = pytesseractJs_recognition(valid_type, image_files[4], temp_path, file_name, language)
115
+
116
+ return out_ocr_text_001, out_ocr_text_002, out_ocr_text_003, out_ocr_text_004, out_ocr_text_005
117
+
118
+
119
  # VIEW
120
  with gr.Blocks() as demo:
121
  with gr.Row():
122
  image_input = gr.Image(type="pil", label="上傳圖片")
123
+ with gr.Column():
124
+ validation_type = gr.Dropdown(choices=["全文分析", "身分證正面", "身分證反面"], value='全文分析',
125
+ label="驗證類別")
126
+ language_dropdown = gr.Dropdown(choices=languages, value="chi_tra", label="語言")
 
 
127
  with gr.Row():
128
+ with gr.Column():
129
+ preImg_button = gr.Button("圖片預先處理")
130
+ gr.Markdown(
131
+ "<div style='display: flex;justify-content: center;align-items: center;background-color: red;font-weight: bold;text-decoration: underline;font-size: 20px;'>多模態預處理圖像</div>")
132
  with gr.Column():
133
  ocr_button = gr.Button("使用 Pytesseract OCR 辨識")
134
  gr.Markdown(
 
137
  llm_button = gr.Button("使用 AI LLM 模型辨識")
138
  gr.Markdown(
139
  "<div style='display: flex;justify-content: center;align-items: center;background-color: red;font-weight: bold;text-decoration: underline;font-size: 20px;'>Package:Bert-base-chinese</div>")
140
+ with gr.Column():
141
+ pytesseractJS_button = gr.Button("使用 PytesseractJS 模型辨識")
142
+ gr.Markdown(
143
+ "<div style='display: flex;justify-content: center;align-items: center;background-color: red;font-weight: bold;text-decoration: underline;font-size: 20px;'>Package:PytesseractJS</div>")
144
 
145
  with gr.Row():
146
  preprocess_output_001 = gr.Image(type="pil", label="預處理後的圖片-方案一")
147
  ocr_output_001 = gr.JSON(label="OCR-001-解析結果")
148
  llm_output_001 = gr.JSON(label="AiLLM-001-解析結果")
149
+ pytesseractJS_output_001 = gr.JSON(label="PytesseractJS-001-解析結果")
150
+
151
  with gr.Row():
152
  preprocess_output_002 = gr.Image(type="pil", label="預處理後的圖片-方案二")
153
  ocr_output_002 = gr.JSON(label="OCR-002-解析結果")
154
  llm_output_002 = gr.JSON(label="AiLLM-002-解析結果")
155
+ pytesseractJS_output_002 = gr.JSON(label="PytesseractJS-002-解析結果")
156
 
157
  with gr.Row():
158
  preprocess_output_003 = gr.Image(type="pil", label="預處理後的圖片-方案三")
159
  ocr_output_003 = gr.JSON(label="OCR-003-解析結果")
160
  llm_output_003 = gr.JSON(label="AiLLM-003-解析結果")
161
+ pytesseractJS_output_003 = gr.JSON(label="PytesseractJS-003-解析結果")
162
+
163
  with gr.Row():
164
  preprocess_output_004 = gr.Image(type="pil", label="預處理後的圖片-方案四")
165
  ocr_output_004 = gr.JSON(label="OCR-004-解析結果")
166
  llm_output_004 = gr.JSON(label="AiLLM-004-解析結果")
167
+ pytesseractJS_output_004 = gr.JSON(label="PytesseractJS-004-解析結果")
168
+
169
  with gr.Row():
170
  preprocess_output_005 = gr.Image(type="pil", label="預處理後的圖片-方案五")
171
  ocr_output_005 = gr.JSON(label="OCR-005-解析結果")
172
  llm_output_005 = gr.JSON(label="AiLLM-005-解析結果")
173
+ pytesseractJS_output_005 = gr.JSON(label="PytesseractJS-005-解析結果")
174
 
175
  # 定義狀態
176
  finish_pre_img_state = gr.State(False)
 
191
  preprocessed_images_state, finish_pre_img_state],
192
  outputs=[llm_output_001, llm_output_002, llm_output_003, llm_output_004, llm_output_005])
193
 
194
+ # pytesseract 按鈕
195
+ pytesseractJS_button.click(pytesseractJs_ocr, inputs=[validation_type, language_dropdown,
196
+ preprocessed_images_state, finish_pre_img_state],
197
+ outputs=[pytesseractJS_output_001, pytesseractJS_output_002, pytesseractJS_output_003,
198
+ pytesseractJS_output_004, pytesseractJS_output_005])
199
+
200
  demo.launch(share=False)
package-lock.json ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "OCR-2",
3
+ "lockfileVersion": 3,
4
+ "requires": true,
5
+ "packages": {
6
+ "": {
7
+ "dependencies": {
8
+ "tesseract.js": "^5.1.0"
9
+ }
10
+ },
11
+ "node_modules/bmp-js": {
12
+ "version": "0.1.0",
13
+ "resolved": "https://registry.npmjs.org/bmp-js/-/bmp-js-0.1.0.tgz",
14
+ "integrity": "sha512-vHdS19CnY3hwiNdkaqk93DvjVLfbEcI8mys4UjuWrlX1haDmroo8o4xCzh4wD6DGV6HxRCyauwhHRqMTfERtjw=="
15
+ },
16
+ "node_modules/idb-keyval": {
17
+ "version": "6.2.1",
18
+ "resolved": "https://registry.npmjs.org/idb-keyval/-/idb-keyval-6.2.1.tgz",
19
+ "integrity": "sha512-8Sb3veuYCyrZL+VBt9LJfZjLUPWVvqn8tG28VqYNFCo43KHcKuq+b4EiXGeuaLAQWL2YmyDgMp2aSpH9JHsEQg=="
20
+ },
21
+ "node_modules/is-electron": {
22
+ "version": "2.2.2",
23
+ "resolved": "https://registry.npmjs.org/is-electron/-/is-electron-2.2.2.tgz",
24
+ "integrity": "sha512-FO/Rhvz5tuw4MCWkpMzHFKWD2LsfHzIb7i6MdPYZ/KW7AlxawyLkqdy+jPZP1WubqEADE3O4FUENlJHDfQASRg=="
25
+ },
26
+ "node_modules/is-url": {
27
+ "version": "1.2.4",
28
+ "resolved": "https://registry.npmjs.org/is-url/-/is-url-1.2.4.tgz",
29
+ "integrity": "sha512-ITvGim8FhRiYe4IQ5uHSkj7pVaPDrCTkNd3yq3cV7iZAcJdHTUMPMEHcqSOy9xZ9qFenQCvi+2wjH9a1nXqHww=="
30
+ },
31
+ "node_modules/node-fetch": {
32
+ "version": "2.7.0",
33
+ "resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.7.0.tgz",
34
+ "integrity": "sha512-c4FRfUm/dbcWZ7U+1Wq0AwCyFL+3nt2bEw05wfxSz+DWpWsitgmSgYmy2dQdWyKC1694ELPqMs/YzUSNozLt8A==",
35
+ "dependencies": {
36
+ "whatwg-url": "^5.0.0"
37
+ },
38
+ "engines": {
39
+ "node": "4.x || >=6.0.0"
40
+ },
41
+ "peerDependencies": {
42
+ "encoding": "^0.1.0"
43
+ },
44
+ "peerDependenciesMeta": {
45
+ "encoding": {
46
+ "optional": true
47
+ }
48
+ }
49
+ },
50
+ "node_modules/opencollective-postinstall": {
51
+ "version": "2.0.3",
52
+ "resolved": "https://registry.npmjs.org/opencollective-postinstall/-/opencollective-postinstall-2.0.3.tgz",
53
+ "integrity": "sha512-8AV/sCtuzUeTo8gQK5qDZzARrulB3egtLzFgteqB2tcT4Mw7B8Kt7JcDHmltjz6FOAHsvTevk70gZEbhM4ZS9Q==",
54
+ "bin": {
55
+ "opencollective-postinstall": "index.js"
56
+ }
57
+ },
58
+ "node_modules/regenerator-runtime": {
59
+ "version": "0.13.11",
60
+ "resolved": "https://registry.npmjs.org/regenerator-runtime/-/regenerator-runtime-0.13.11.tgz",
61
+ "integrity": "sha512-kY1AZVr2Ra+t+piVaJ4gxaFaReZVH40AKNo7UCX6W+dEwBo/2oZJzqfuN1qLq1oL45o56cPaTXELwrTh8Fpggg=="
62
+ },
63
+ "node_modules/tesseract.js": {
64
+ "version": "5.1.0",
65
+ "resolved": "https://registry.npmjs.org/tesseract.js/-/tesseract.js-5.1.0.tgz",
66
+ "integrity": "sha512-2fH9pqWdS2C6ue/3OoGg91Wtv7Rt/1atYu/g0Q1SGFrowEW/kIBkG361hLienHsWe4KWEjxOJBrCQYpIBWG6WA==",
67
+ "hasInstallScript": true,
68
+ "dependencies": {
69
+ "bmp-js": "^0.1.0",
70
+ "idb-keyval": "^6.2.0",
71
+ "is-electron": "^2.2.2",
72
+ "is-url": "^1.2.4",
73
+ "node-fetch": "^2.6.9",
74
+ "opencollective-postinstall": "^2.0.3",
75
+ "regenerator-runtime": "^0.13.3",
76
+ "tesseract.js-core": "^5.1.0",
77
+ "wasm-feature-detect": "^1.2.11",
78
+ "zlibjs": "^0.3.1"
79
+ }
80
+ },
81
+ "node_modules/tesseract.js-core": {
82
+ "version": "5.1.0",
83
+ "resolved": "https://registry.npmjs.org/tesseract.js-core/-/tesseract.js-core-5.1.0.tgz",
84
+ "integrity": "sha512-D4gc5ET1DF/sDayF/eVmHgVGo7nqVC2e3d7uVgVOSAk4NOcmUqvJRTj8etqEmI/2390ZkXCRiDMxTD1RFYyp1g=="
85
+ },
86
+ "node_modules/tr46": {
87
+ "version": "0.0.3",
88
+ "resolved": "https://registry.npmjs.org/tr46/-/tr46-0.0.3.tgz",
89
+ "integrity": "sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw=="
90
+ },
91
+ "node_modules/wasm-feature-detect": {
92
+ "version": "1.6.2",
93
+ "resolved": "https://registry.npmjs.org/wasm-feature-detect/-/wasm-feature-detect-1.6.2.tgz",
94
+ "integrity": "sha512-4dnaZ+Fq/q+BbMlTIfaNS851i+0zmHzui++NUZdskESRu3xwB6g6x2FnGvBdWtpijqO5yuj1l+EUTJGc4S4DKg=="
95
+ },
96
+ "node_modules/webidl-conversions": {
97
+ "version": "3.0.1",
98
+ "resolved": "https://registry.npmjs.org/webidl-conversions/-/webidl-conversions-3.0.1.tgz",
99
+ "integrity": "sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ=="
100
+ },
101
+ "node_modules/whatwg-url": {
102
+ "version": "5.0.0",
103
+ "resolved": "https://registry.npmjs.org/whatwg-url/-/whatwg-url-5.0.0.tgz",
104
+ "integrity": "sha512-saE57nupxk6v3HY35+jzBwYa0rKSy0XR8JSxZPwgLr7ys0IBzhGviA1/TUGJLmSVqs8pb9AnvICXEuOHLprYTw==",
105
+ "dependencies": {
106
+ "tr46": "~0.0.3",
107
+ "webidl-conversions": "^3.0.0"
108
+ }
109
+ },
110
+ "node_modules/zlibjs": {
111
+ "version": "0.3.1",
112
+ "resolved": "https://registry.npmjs.org/zlibjs/-/zlibjs-0.3.1.tgz",
113
+ "integrity": "sha512-+J9RrgTKOmlxFSDHo0pI1xM6BLVUv+o0ZT9ANtCxGkjIVCCUdx9alUF8Gm+dGLKbkkkidWIHFDZHDMpfITt4+w==",
114
+ "engines": {
115
+ "node": "*"
116
+ }
117
+ }
118
+ }
119
+ }
package.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "dependencies": {
3
+ "tesseract.js": "^5.1.0"
4
+ }
5
+ }
pytesseractJsOCR.js ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ const Tesseract = require('tesseract.js');
2
+ const fs = require('fs');
3
+
4
+ const image = process.argv[2];
5
+ const lang = process.argv[3];
6
+ const saveFilePath = process.argv[4];
7
+
8
+ Tesseract.recognize(
9
+ image,
10
+ lang,
11
+ {
12
+ logger: m => console.log(m)
13
+ }
14
+ ).then(({ data: { text } }) => {
15
+ console.log(text);
16
+ fs.writeFileSync(saveFilePath, text);
17
+ }).catch(err => {
18
+ console.error(err);
19
+ fs.writeFileSync(saveFilePath, 'Error: ' + err.message);
20
+ });
requirements.txt CHANGED
@@ -5,4 +5,6 @@ Pillow
5
  torch
6
  huggingface-hub
7
  opencv-python
8
- numpy
 
 
 
5
  torch
6
  huggingface-hub
7
  opencv-python
8
+ numpy
9
+ pyppeteer
10
+ playwright