|
import os |
|
import subprocess |
|
from datetime import datetime |
|
|
|
import gradio as gr |
|
|
|
from Plan.AiLLM import llm_recognition |
|
from Plan.pytesseractJsOCR import pytesseractJs_recognition |
|
from Plan.pytesseractOCR import ocr_recognition |
|
from Preprocess.preprocessImg import PreprocessImg |
|
|
|
|
|
os.chdir("node_app") |
|
|
|
if not os.path.exists("node_modules"): |
|
print(" ######################## NPM INSTALL ########################") |
|
subprocess.run(["npm", "install"]) |
|
|
|
os.chdir("..") |
|
|
|
|
|
|
|
languages = os.popen('tesseract --list-langs').read().split('\n')[1:-1] |
|
|
|
|
|
|
|
def preprocess_image(image): |
|
if image is None: |
|
gr.Warning("尚未上傳圖片!") |
|
raise ValueError("尚未上傳圖片!") |
|
preprocessed_images = PreprocessImg(image) |
|
return ( |
|
preprocessed_images, |
|
True, |
|
preprocessed_images[0], |
|
preprocessed_images[1], |
|
preprocessed_images[2], |
|
preprocessed_images[3], |
|
preprocessed_images[4] |
|
) |
|
|
|
|
|
|
|
def Basic_ocr(valid_type, language, preprocessed_images, finish_pre_img): |
|
if not finish_pre_img: |
|
gr.Warning("請先執行圖像預處理,再進行分析!") |
|
raise ValueError("請先執行圖像預處理,再進行分析!") |
|
|
|
|
|
ocr_result_001 = ocr_recognition(preprocessed_images[0], valid_type, language) |
|
|
|
ocr_result_002 = ocr_recognition(preprocessed_images[1], valid_type, language) |
|
|
|
ocr_result_003 = ocr_recognition(preprocessed_images[2], valid_type, language) |
|
|
|
ocr_result_004 = ocr_recognition(preprocessed_images[3], valid_type, language) |
|
|
|
ocr_result_005 = ocr_recognition(preprocessed_images[4], valid_type, language) |
|
|
|
return ocr_result_001, ocr_result_002, ocr_result_003, ocr_result_004, ocr_result_005 |
|
|
|
|
|
|
|
def AiLLM_ocr(valid_type, language, preprocessed_images, finish_pre_img): |
|
if not finish_pre_img: |
|
gr.Warning("請先執行圖像預處理,再進行分析!") |
|
raise ValueError("請先執行圖像預處理,再進行分析!") |
|
|
|
|
|
llm_result_001 = llm_recognition(preprocessed_images[0], valid_type, language) |
|
|
|
llm_result_002 = llm_recognition(preprocessed_images[1], valid_type, language) |
|
|
|
llm_result_003 = llm_recognition(preprocessed_images[2], valid_type, language) |
|
|
|
llm_result_004 = llm_recognition(preprocessed_images[3], valid_type, language) |
|
|
|
llm_result_005 = llm_recognition(preprocessed_images[4], valid_type, language) |
|
|
|
return llm_result_001, llm_result_002, llm_result_003, llm_result_004, llm_result_005 |
|
|
|
|
|
def pytesseractJs_ocr(valid_type, language, preprocessed_images, finish_pre_img): |
|
if not finish_pre_img: |
|
gr.Warning("請先執行圖像預處理,再進行分析!") |
|
raise ValueError("請先執行圖像預處理,再進行分析!") |
|
|
|
temp_path = 'node_app/TempFile/' + datetime.now().strftime('%Y%m%d_%H%M%S') + '/' |
|
|
|
if not os.path.exists(temp_path): |
|
os.makedirs(temp_path) |
|
|
|
image_files = [] |
|
for i, image in enumerate(preprocessed_images): |
|
filename = temp_path + f'preprocessed_image_{i}.png' |
|
image.save(filename) |
|
image_files.append(filename) |
|
|
|
|
|
file_name = 'out_pytesseractJs_result_1.txt' |
|
out_ocr_text_001 = pytesseractJs_recognition(valid_type, image_files[0], temp_path, file_name, language) |
|
|
|
|
|
file_name = 'out_pytesseractJs_result_2.txt' |
|
out_ocr_text_002 = pytesseractJs_recognition(valid_type, image_files[1], temp_path, file_name, language) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
file_name = 'out_pytesseractJs_result_3.txt' |
|
out_ocr_text_003 = pytesseractJs_recognition(valid_type, image_files[2], temp_path, file_name, language) |
|
|
|
|
|
file_name = 'out_pytesseractJs_result_4.txt' |
|
out_ocr_text_004 = pytesseractJs_recognition(valid_type, image_files[3], temp_path, file_name, language) |
|
|
|
|
|
file_name = 'out_pytesseractJs_result_5.txt' |
|
out_ocr_text_005 = pytesseractJs_recognition(valid_type, image_files[4], temp_path, file_name, language) |
|
|
|
return out_ocr_text_001, out_ocr_text_002, out_ocr_text_003, out_ocr_text_004, out_ocr_text_005 |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
image_input = gr.Image(type="pil", label="上傳圖片") |
|
with gr.Column(): |
|
validation_type = gr.Dropdown(choices=["全文分析", "身分證正面", "身分證反面"], value='全文分析', |
|
label="驗證類別") |
|
language_dropdown = gr.Dropdown(choices=languages, value="chi_tra", label="語言") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
preImg_button = gr.Button("圖片預先處理") |
|
gr.Markdown( |
|
"<div style='display: flex;justify-content: center;align-items: center;background-color: #ffdf00;font-weight: bold;text-decoration: underline;font-size: 20px;'>多模態預處理圖像</div>") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
ocr_button = gr.Button("使用 Pytesseract OCR 辨識") |
|
gr.Markdown( |
|
"<div style='display: flex;justify-content: center;align-items: center;background-color: #ffdf00;font-weight: bold;text-decoration: underline;font-size: 20px;'>Package: Google Pytesseract</div>") |
|
with gr.Column(): |
|
llm_button = gr.Button("使用 AI LLM 模型辨識") |
|
gr.Markdown( |
|
"<div style='display: flex;justify-content: center;align-items: center;background-color: #ffdf00;font-weight: bold;text-decoration: underline;font-size: 20px;'>Package:Bert-base-chinese</div>") |
|
with gr.Column(): |
|
pytesseractJS_button = gr.Button("使用 PytesseractJS 模型辨識") |
|
gr.Markdown( |
|
"<div style='display: flex;justify-content: center;align-items: center;background-color: #ffdf00;font-weight: bold;text-decoration: underline;font-size: 20px;'>Package:PytesseractJS</div>") |
|
|
|
with gr.Row(): |
|
preprocess_output_001 = gr.Image(type="pil", label="預處理後的圖片-方案一") |
|
ocr_output_001 = gr.JSON(label="OCR-001-解析結果") |
|
llm_output_001 = gr.JSON(label="AiLLM-001-解析結果") |
|
pytesseractJS_output_001 = gr.JSON(label="PytesseractJS-001-解析結果") |
|
|
|
with gr.Row(): |
|
preprocess_output_002 = gr.Image(type="pil", label="預處理後的圖片-方案二") |
|
ocr_output_002 = gr.JSON(label="OCR-002-解析結果") |
|
llm_output_002 = gr.JSON(label="AiLLM-002-解析結果") |
|
pytesseractJS_output_002 = gr.JSON(label="PytesseractJS-002-解析結果") |
|
|
|
with gr.Row(): |
|
preprocess_output_003 = gr.Image(type="pil", label="預處理後的圖片-方案三") |
|
ocr_output_003 = gr.JSON(label="OCR-003-解析結果") |
|
llm_output_003 = gr.JSON(label="AiLLM-003-解析結果") |
|
pytesseractJS_output_003 = gr.JSON(label="PytesseractJS-003-解析結果") |
|
|
|
with gr.Row(): |
|
preprocess_output_004 = gr.Image(type="pil", label="預處理後的圖片-方案四") |
|
ocr_output_004 = gr.JSON(label="OCR-004-解析結果") |
|
llm_output_004 = gr.JSON(label="AiLLM-004-解析結果") |
|
pytesseractJS_output_004 = gr.JSON(label="PytesseractJS-004-解析結果") |
|
|
|
with gr.Row(): |
|
preprocess_output_005 = gr.Image(type="pil", label="預處理後的圖片-方案五") |
|
ocr_output_005 = gr.JSON(label="OCR-005-解析結果") |
|
llm_output_005 = gr.JSON(label="AiLLM-005-解析結果") |
|
pytesseractJS_output_005 = gr.JSON(label="PytesseractJS-005-解析結果") |
|
|
|
|
|
finish_pre_img_state = gr.State(False) |
|
preprocessed_images_state = gr.State([]) |
|
|
|
|
|
preImg_button.click(preprocess_image, inputs=[image_input], |
|
outputs=[preprocessed_images_state, finish_pre_img_state, |
|
preprocess_output_001, preprocess_output_002, |
|
preprocess_output_003, preprocess_output_004, |
|
preprocess_output_005]) |
|
|
|
ocr_button.click(Basic_ocr, inputs=[validation_type, language_dropdown, |
|
preprocessed_images_state, finish_pre_img_state], |
|
outputs=[ocr_output_001, ocr_output_002, ocr_output_003, ocr_output_004, ocr_output_005]) |
|
|
|
llm_button.click(AiLLM_ocr, inputs=[validation_type, language_dropdown, |
|
preprocessed_images_state, finish_pre_img_state], |
|
outputs=[llm_output_001, llm_output_002, llm_output_003, llm_output_004, llm_output_005]) |
|
|
|
|
|
pytesseractJS_button.click(pytesseractJs_ocr, inputs=[validation_type, language_dropdown, |
|
preprocessed_images_state, finish_pre_img_state], |
|
outputs=[pytesseractJS_output_001, pytesseractJS_output_002, pytesseractJS_output_003, |
|
pytesseractJS_output_004, pytesseractJS_output_005]) |
|
|
|
demo.launch(share=False) |
|
|