Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the model
|
5 |
+
model_name = "knowledgator/comprehend_it-base"
|
6 |
+
classifier = pipeline("zero-shot-classification", model=model_name, device="cpu")
|
7 |
+
|
8 |
+
# Function to classify feedback
|
9 |
+
def classify_feedback(feedback_text):
|
10 |
+
# Classify feedback using the loaded model
|
11 |
+
labels = ["Procedures", "Maintenance", "Operations", "Health", "Safety"]
|
12 |
+
|
13 |
+
result = classifier(feedback_text, labels, multi_label=True)
|
14 |
+
|
15 |
+
# Get the top two labels associated with the feedback
|
16 |
+
top_labels = result["labels"][:2]
|
17 |
+
scores = result["scores"][:2]
|
18 |
+
|
19 |
+
# Generate HTML content for displaying the scores as meters/progress bars
|
20 |
+
html_content = ""
|
21 |
+
for i in range(len(top_labels)):
|
22 |
+
score_percentage = scores[i] * 100 # Convert score to percentage
|
23 |
+
html_content += f"<div><b>{top_labels[i]}:</b> {scores[i]:.2f} <div style='background-color: #e0e0e0; border-radius: 10px;'><div style='height: 24px; width: {score_percentage}%; background-color: #76b900; border-radius: 10px;'></div></div></div>"
|
24 |
+
|
25 |
+
return html_content
|
26 |
+
|
27 |
+
# Create Gradio interface
|
28 |
+
feedback_textbox = gr.Textbox(label="Enter your feedback:")
|
29 |
+
feedback_output = gr.HTML(label="Top 2 Labels with Scores:")
|
30 |
+
|
31 |
+
gr.Interface(
|
32 |
+
fn=classify_feedback,
|
33 |
+
inputs=feedback_textbox,
|
34 |
+
outputs=feedback_output,
|
35 |
+
title="Feedback Classifier",
|
36 |
+
description="Enter your feedback and get the top 2 associated labels with scores."
|
37 |
+
).launch()
|