# import datetime import os import gradio as gr import numpy as np import pandas as pd os.environ["no_proxy"] = "localhost,127.0.0.1,::1" ####################################################################################### def read_ui(username,password): if (username=='' or password==''): return '请填写完整信息' user_login_df=pd.read_csv('./user_login/login.csv',encoding='gbk',converters = {'password':str}) user_login=user_login_df.set_index('username')['password'].T.to_dict() user_data1_df=pd.read_csv('./user_data/data_1.csv',encoding='gbk') user_data2_df=pd.read_csv('./user_data/data_2.csv',encoding='gbk',converters ={'senti_flt':float,'hobby_flt':float,'all_flt':float}) results='' is_usn=(username in user_login) if(is_usn): pswd_crct=(password==user_login[username]) if(is_usn and pswd_crct): report1=user_data1_df[user_data1_df['username'] == username] report1=np.array(report1).tolist() report2=user_data2_df[user_data2_df['username'] == username] report2=np.array(report2).tolist() results='用户名:'+username+'\n' for i in range(len(report1)): line1=report1[i] results=results+'第'+str(i+1)+'次量表测试 '+'日期:'+str(line1[1])+' 时间:'+str(line1[2])+'\n' results=results+'量表分数:'+str(line1[3])+'\n结果解释:'+str(line1[4])+'\n建议:'+str(line1[5])+'\n' results+='\n' for i in range (len(report2)): line2=report2[i] results=results+'第'+str(i+1)+'次咨询 '+'日期:'+str(line2[1])+' 时间:'+str(line2[2])+'\n' results=results+'睡眠情况:'+str(line2[3])+'\n食欲情况:'+str(line2[4])+'\n情绪情况:'+str(line2[5])+'\n情绪分数:'+str(line2[6])+'\n情绪回答:'+str(line2[7])+'\n轻生倾向:'+str(line2[8])+'\n' results=results+'兴趣爱好分数:'+str(line2[9])+'\n兴趣爱好回答:'+str(line2[10])+'\n近期总体分数:'+str(line2[11])+'\n近期总体回答:'+str(line2[12])+'\n'+'最终建议:'+line2[13]+'\n\n' elif(is_usn): results='密码错误,无法读取报告数据。' else: results='账户不存在,无法读取报告数据。' return results def delete_ui(username,password): if (username=='' or password==''): return '请填写完整信息' user_login_df=pd.read_csv('./user_login/login.csv',encoding='gbk',converters = {'password':str}) user_login=user_login_df.set_index('username')['password'].T.to_dict() user_data1_df=pd.read_csv('./user_data/data_1.csv',encoding='gbk') user_data2_df=pd.read_csv('./user_data/data_2.csv',encoding='gbk',converters ={'senti_flt':float,'hobby_flt':float,'all_flt':float}) results='' is_usn=(username in user_login) if(is_usn): pswd_crct=(password==user_login[username]) if(is_usn and pswd_crct): user_data1_df.drop(user_data1_df[user_data1_df['username'] == username].index,inplace=True) user_data2_df.drop(user_data2_df[user_data2_df['username'] == username].index,inplace=True) user_login_df.drop(user_login_df[user_login_df['username'] == username].index,inplace=True) user_login_df.to_csv('./user_login/login.csv',encoding='gbk',index=False) user_data1_df.to_csv('./user_data/data_1.csv',encoding='gbk',index=False) user_data2_df.to_csv('./user_data/data_2.csv',encoding='gbk',index=False) results='已删除对应账户所有数据' elif(is_usn): results='密码错误,无法删除报告数据。' else: results='账户不存在,无法删除报告数据。' return results ########################################################################################### def clear_info(): return ( gr.Textbox(""), gr.Textbox(""), gr.Textbox(""), ) with gr.Blocks() as user_center: with gr.Tab("查询历史"): with gr.Row(): gr.HTML("