import os import gradio as gr from openai import OpenAI OpenAI.api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY") client = OpenAI(api_key=api_key) os.environ["no_proxy"] = "localhost,127.0.0.1,::1" ###量表函数### def visibility(): return gr.Column(visible=True) def scale2json(choice1,choice2,choice3,choice4,choice5,choice6,choice7,choice8,choice9,choice10,choice11,choice12,choice13,choice14,choice15,choice16,choice17,choice18,choice19,choice20): score = 0 global initial_prompt choices = [choice1,choice2,choice3,choice4,choice5,choice6,choice7,choice8,choice9,choice10,choice11,choice12,choice13,choice14,choice15,choice16,choice17,choice18,choice19,choice20] if None in choices: gr.Warning("您有未勾选的题目,请确认后再次提交") else: for i in range(len(choices)): match i: case 1|4|5|10|11|13|15|16|17|19: score += 4 - choices[i] case _: score += choices[i] + 1 s = round(1.25*score, 0) DEPRESS="无抑郁体验" if s<53 else "可能有轻度抑郁倾向" if s<=62 else "可能有中度抑郁倾向" if s<=72 else "可能有重度抑郁倾向" SLEEP="夜间睡眠良好"if choice4==0 else "有时夜间睡眠不好" if choice4==1 else "经常夜间睡眠不好" if choice4==2 else "总是夜间睡眠不好" EAT="饮食状态差,不如平时" if choice5==0 else "饮食状态经常不如平时" if choice5==1 else "饮食状态正常" if choice5==2 else "饮食状态良好" WEIGHT="体重正常" if choice7==0 else "有时体重会减轻" if choice7==1 else "体重经常会减轻" if choice7==2 else "体重相较于平时总是减轻" MOOD1="很少感到沮丧郁闷" if choice1==0 else "有时感到沮丧郁闷" if choice1==1 else "经常感到沮丧郁闷" if choice1==2 else "总是感到沮丧郁闷" MOOD2="几乎没有想哭的感觉" if choice3==0 else "有时会有想哭的感觉" if choice3==1 else "经常会有想哭的感觉" if choice3==2 else "总是会想哭" MOOD3="不容易发怒" if choice15==0 else "有时容易发怒" if choice15==1 else "经常容易发怒" if choice15==2 else "总是容易发怒" MOOD=MOOD1+", "+MOOD2+", "+MOOD3 TIRED="很少感到疲劳" if choice10==0 else "有时会感到疲劳" if choice10==1 else "经常会感到疲劳" if choice10==2 else "总是感到疲劳" ANXIETY="几乎不会烦躁" if choice13==0 else "有时会坐立不安、难以平静" if choice13==1 else "经常会坐立不安、难以平静" if choice13==2 else"总是坐立不安、感觉难以平静" PHYSICAL=TIRED+", "+ANXIETY VALUE1="从来不觉得自己有用、不可或缺" if choice17==0 else "只有有时会觉得自己有用、不可或缺" if choice17==1 else "觉得自己是有用的、不可或缺的" VALUE2="很少觉得自己的生活有意义" if choice18==0 else "有时才会觉得自己的生活有意义" if choice18==1 else "觉得自己的生活是有意义的" VALUE=VALUE1+", "+VALUE2 SUICIDE="无自杀倾向" if choice19==0 else "有时会觉得自己死了别人会过得更好" if choice19==1 else "经常会觉得自己死了别人会过得更好" if choice19==2 else "总觉得自己死了别人会过得更好" json_info=r""" {{ "睡眠状况":"{}", "饮食状况":"{}", "体重状况":"{}", "心情状况":"{}", "日常生理状况":"{}", "价值感":"{}", "自杀倾向":"{}", "抑郁情况":"{}", }} """.format(SLEEP,EAT,WEIGHT,MOOD,PHYSICAL,VALUE,SUICIDE,DEPRESS) if choice19>=2: gr.Info("如果你感到难以坚持下去,想要结束自己的生命,请一定不要灰心,请通过电话联系我们(4000-100-525, 再拨2),我们会陪伴在你身边!") initial_prompt="""你是一名【专业的心理咨询师】,以下是你的用户的【基本情况】,由JSON格式给出:"""+json_info+"""当你和用户交谈时,你需要【主动】向用户提问,并【围绕】用户的【基本情况】展开,【负面】的基本情况需要【着重】展开。 首先,你需要根据用户的基本情况【展开详细的咨询】,但是【不能一下抛出所有问题,需要逐条提问】,主动向用户【提问】相关的问题并基于相应的【建议】。 询问完后后,你需要生成一个【咨询报告】,包含【用户情况】、【相应建议】、【最终总结】,先以Markdown格式输出,再以JSON格式输出。 最后你需要告诉用户,诊断已结束,你不会主动提问,但受咨询者可以继续向你提问感兴趣的问题,你会作出回答。""" return gr.Column(visible=True),s,initial_prompt ############ ###Chatbot函数### def predict(message, history): global initial_prompt history_openai_format = [] history_openai_format.append({"role": "assistant", "content":initial_prompt}) for human, assistant in history: history_openai_format.append({"role": "user", "content": human }) history_openai_format.append({"role": "assistant", "content":assistant}) history_openai_format.append({"role": "user", "content": message}) response = client.chat.completions.create(model='gpt-4-turbo-preview', messages= history_openai_format, temperature=1.0, stream=True) partial_message = "" for chunk in response: if chunk.choices[0].delta.content is not None: partial_message = partial_message + chunk.choices[0].delta.content yield partial_message ############## CHAT_SECTION=gr.ChatInterface( predict, chatbot=gr.Chatbot( height=400, bubble_full_width=False, #avatar_images=(os.path.join(os.path.dirname(__file__), "patient_ava.png"), os.path.join(os.path.dirname(__file__), "docter_ava.png")), likeable=True, ), # textbox=gr.Textbox(placeholder="在此输入消息...",), retry_btn="🔄重新生成", undo_btn="↩️撤回信息", clear_btn="🗑️清空信息", stop_btn="停止生成", submit_btn="发送", ) with gr.Blocks() as SCALE_AND_CONSULT: ###量表环节 with gr.Column(): gr.Markdown("**在此项检测模式中,用户需要首先填写一份量表,随后系统将根据量表的填写情况对用户进行更细致的咨询,最终结合用户的回答状况给出诊断结果。**") gr.Markdown("首先进行量表填写。本评定量表为临床上常用于抑郁症检测的SDS(Self-rating depression scale)量表,共有20个项目,请您根据最近一星期以来的实际感受,选择与您的情况最相符的答案。") gr.Markdown("A:从无或偶尔(过去一周内,出现这类情况的日子不超过一天)") gr.Markdown("B:有时(过去一周内,有1-2天有过这类情况)") gr.Markdown("C:经常(过去一周内,有3-4天有过这类情况)") gr.Markdown("D:总是如此(过去一周内,有5-7天有过类似情况)") # gr.Markdown("评分范围与标准:") # gr.Markdown("0-52: 无抑郁体验  53-62: 轻度抑郁  63-72: 中度抑郁  72-80: 重度抑郁") btn = gr.Button("继续") with gr.Column(visible=False) as question: r1 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "1.我感到心里沮丧,郁闷",type = "index") r2 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "2.我感到早晨心情最好",type = "index") r3 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "3.我要哭或想哭",type = "index") r4 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "4.我夜间睡眠不好",type = "index") r5 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "5.我吃饭像平常一样多",type = "index") r6 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "6.我的性功能正常",type = "index") r7 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "7.我感到体重减轻",type = "index") r8 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "8.我为便秘烦恼",type = "index") r9 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "9.我的心跳比平时快",type = "index") r10 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "10.我无故感到疲劳",type = "index") r11 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "11.我的头脑像往常一样清楚",type = "index") r12 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "12.我做事情像平时一样不感到困难",type = "index") r13 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "13.我坐卧不安,难以保持平静",type = "index") r14 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "14.我对未来感到有希望",type = "index") r15 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "15.我比平时更容易激怒",type = "index") r16 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "16.我觉得决定什么事情很容易",type = "index") r17 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "17.我感到自己是有用的和不可缺少的人",type = "index") r18 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "18.我的生活很有意义",type = "index") r19 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "19.假若我死了别人会过得更好",type = "index") r20 = gr.Radio(["A.从无或偶尔","B.有时","C.经常","D.总是如此"],label = "20.我仍旧喜爱自己平时喜爱的东西",type = "index") # btn2 = gr.Button("提交") btn_json=gr.Button("提交问卷并进入咨询") with gr.Column(visible=False) as JSON: with gr.Row(): score = gr.Textbox(label="得分",visible=False) with gr.Row(): output_json=gr.Textbox(label="scale2jsonprompt",visible=True) with gr.Row(): with gr.Column(): CHAT_SECTION.render() with gr.Row(): generate=gr.Button("结束聊天,生成最终结果(待开发)") btn.click(visibility,outputs=question) btn_json.click(scale2json,[r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15,r16,r17,r18,r19,r20],[JSON,score,output_json])