# -*- coding:utf-8 -*- # @FileName :lmOrtInderRuntimeSession.py.py # @Time :2023/10/13 17:24 # @Author :lovemefan # @Email :lovemefan@outlook.com import logging from pathlib import Path import numpy as np from onnxruntime import ( SessionOptions, GraphOptimizationLevel, get_device, get_available_providers, InferenceSession, ) from paraformer.runtime.python.utils.singleton import singleton @singleton class LMOrtInferRuntimeSession: def __init__(self, model_file, device_id=-1, intra_op_num_threads=4): sess_opt = SessionOptions() sess_opt.log_severity_level = 4 sess_opt.intra_op_num_threads = intra_op_num_threads sess_opt.enable_cpu_mem_arena = False sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL cuda_ep = "CUDAExecutionProvider" cuda_provider_options = { "device_id": device_id, "arena_extend_strategy": "kNextPowerOfTwo", "cudnn_conv_algo_search": "EXHAUSTIVE", "do_copy_in_default_stream": "true", } cpu_ep = "CPUExecutionProvider" cpu_provider_options = { "arena_extend_strategy": "kSameAsRequested", } EP_list = [] if ( device_id != "-1" and get_device() == "GPU" and cuda_ep in get_available_providers() ): EP_list = [(cuda_ep, cuda_provider_options)] EP_list.append((cpu_ep, cpu_provider_options)) self._verify_model(model_file) self.session = InferenceSession( model_file, sess_options=sess_opt, providers=EP_list ) if device_id != "-1" and cuda_ep not in self.session.get_providers(): logging.warning( f"{cuda_ep} is not avaiable for current env, the inference part is automatically shifted to be executed under {cpu_ep}.\n" "Please ensure the installed onnxruntime-gpu version matches your cuda and cudnn version, " "you can check their relations from the offical web site: " "https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html" ) def __call__( self, texts: np.ndarray, ) -> np.ndarray: """ Args: texts: numpy.ndarray , [batch size , sequence length] batch only support 1, dtype is int64 Returns: """ input_dict = dict(zip(self.get_input_names(), (texts,))) return self.session.run(None, input_dict)[0] def get_input_names( self, ): return [v.name for v in self.session.get_inputs()] def get_output_names( self, ): return [v.name for v in self.session.get_outputs()] @staticmethod def _verify_model(model_path): model_path = Path(model_path) if not model_path.exists(): raise FileNotFoundError(f"{model_path} does not exists.") if not model_path.is_file(): raise FileExistsError(f"{model_path} is not a file.")