import os from openai import OpenAI import gradio as gr OpenAI.api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY") client = OpenAI(api_key=api_key) def predict(message, history): history_openai_format = [] history_openai_format.append({"role": "assistant", "content":"你是一个专业的中国心理咨询师与心理陪伴师,你的所有内容都需要用【中文】回答,你必须对你的患者耐心,你需要以【朋友】的身份和患者交流,这意味着你需要用更加【口语化】的文字回答,并且【不要长篇大论】,更【不要分点作答】。可以偶尔针对用户的回答进行【提问】,并给予必要的【建议和引导】。"}) for human, assistant in history: history_openai_format.append({"role": "user", "content": human }) history_openai_format.append({"role": "assistant", "content":assistant}) history_openai_format.append({"role": "user", "content": message}) response = client.chat.completions.create(model='gpt-3.5-turbo', messages= history_openai_format, # messages=[ # { # "role": "system", # "content": "你是一个专业的中国心理医生,你的所有内容都需要用【中文】回答,你必须对你的患者耐心,你需要以【朋友】的身份和患者交流,这意味着你需要用更加【口语化】的文字回答,并且【不要长篇大论】,更【不要分点作答】。", # }, # { # "role": "user", # "content": message, # }, # ], temperature=1.0, stream=True) partial_message = "" for chunk in response: if chunk.choices[0].delta.content is not None: partial_message = partial_message + chunk.choices[0].delta.content yield partial_message chat=gr.ChatInterface( predict, fill_height=True, chatbot=gr.Chatbot(height=500,bubble_full_width=False,), )