import glob import logging import os.path import pickle import platform import time from pathlib import Path from typing import Tuple, Union import numpy as np from paraformer.runtime.python.utils.asrOrtInferRuntimeSession import ( TokenIDConverter, code_mix_split_words, split_to_mini_sentence) from paraformer.runtime.python.utils.logger import logger from paraformer.runtime.python.utils.puncOrtInferRuntimeSession import ( ONNXRuntimeError, PuncOrtInferRuntimeSession) from paraformer.runtime.python.utils.singleton import singleton @singleton class CT_Transformer: """ Author: Speech Lab, Alibaba Group, China CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection https://arxiv.org/pdf/2003.01309.pdf """ def __init__( self, model_dir: Union[str, Path] = None, batch_size: int = 1, device_id: Union[str, int] = "-1", quantize: bool = True, intra_op_num_threads: int = 4, ): project_dir = os.path.dirname( os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) ) model_dir = model_dir or os.path.join(project_dir, "onnx", "punc") if model_dir is None or not Path(model_dir).exists(): raise FileNotFoundError(f"{model_dir} does not exist.") if not os.path.exists(os.path.join(model_dir, "model_quant.onnx")): model_file = glob.glob(os.path.join(model_dir, "model_quant_*.onnx")) else: model_file = os.path.join(model_dir, "model_quant.onnx") config_file = os.path.join(model_dir, "config.pkl") logger.info(f"Loading config file {config_file}") start = time.time() with open(config_file, "rb") as file: config = pickle.load(file) logger.info( f"Loading config file {config_file} finished, takes {time.time() - start} s" ) self.converter = TokenIDConverter(config["token_list"]) self.ort_infer = PuncOrtInferRuntimeSession(model_file, device_id) self.batch_size = 1 self.punc_list = config["punc_list"] self.period = 0 for i in range(len(self.punc_list)): if self.punc_list[i] == ",": self.punc_list[i] = "," elif self.punc_list[i] == "?": self.punc_list[i] = "?" elif self.punc_list[i] == "。": self.period = i def offline(self, text: Union[list, str], split_size=20): split_text = code_mix_split_words(text) split_text_id = self.converter.tokens2ids(split_text) mini_sentences = split_to_mini_sentence(split_text, split_size) mini_sentences_id = split_to_mini_sentence(split_text_id, split_size) assert len(mini_sentences) == len(mini_sentences_id) cache_sent = [] cache_sent_id = [] new_mini_sentence = "" new_mini_sentence_punc = [] cache_pop_trigger_limit = 200 for mini_sentence_i in range(len(mini_sentences)): mini_sentence = mini_sentences[mini_sentence_i] mini_sentence_id = mini_sentences_id[mini_sentence_i] mini_sentence = cache_sent + mini_sentence mini_sentence_id = np.array(cache_sent_id + mini_sentence_id, dtype="int64") text_lengths = np.array([len(mini_sentence)], dtype="int32") data = { "text": mini_sentence_id[None, :], "text_lengths": text_lengths, } try: outputs = self.offline_infer(data["text"], data["text_lengths"]) y = outputs[0] punctuations = np.argmax(y, axis=-1)[0] assert punctuations.size == len(mini_sentence) except ONNXRuntimeError as e: logger.exception(e) # Search for the last Period/QuestionMark as cache if mini_sentence_i < len(mini_sentences) - 1: sentenceEnd = -1 last_comma_index = -1 for i in range(len(punctuations) - 2, 1, -1): if ( self.punc_list[punctuations[i]] == "。" or self.punc_list[punctuations[i]] == "?" ): sentenceEnd = i break if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",": last_comma_index = i if ( sentenceEnd < 0 and len(mini_sentence) > cache_pop_trigger_limit and last_comma_index >= 0 ): # The sentence it too long, cut off at a comma. sentenceEnd = last_comma_index punctuations[sentenceEnd] = self.period cache_sent = mini_sentence[sentenceEnd + 1 :] cache_sent_id = mini_sentence_id[sentenceEnd + 1 :].tolist() mini_sentence = mini_sentence[0 : sentenceEnd + 1] punctuations = punctuations[0 : sentenceEnd + 1] new_mini_sentence_punc += [int(x) for x in punctuations] words_with_punc = [] for i in range(len(mini_sentence)): if i > 0: if ( len(mini_sentence[i][0].encode()) == 1 and len(mini_sentence[i - 1][0].encode()) == 1 ): mini_sentence[i] = " " + mini_sentence[i] words_with_punc.append(mini_sentence[i]) if self.punc_list[punctuations[i]] != "_": words_with_punc.append(self.punc_list[punctuations[i]]) new_mini_sentence += "".join(words_with_punc) # Add Period for the end of the sentence new_mini_sentence_out = new_mini_sentence new_mini_sentence_punc_out = new_mini_sentence_punc if mini_sentence_i == len(mini_sentences) - 1: if new_mini_sentence[-1] == "," or new_mini_sentence[-1] == "、": new_mini_sentence_out = new_mini_sentence[:-1] + "。" new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [ self.period ] elif new_mini_sentence[-1] != "。" and new_mini_sentence[-1] != "?": new_mini_sentence_out = new_mini_sentence + "。" new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [ self.period ] return new_mini_sentence_out, new_mini_sentence_punc_out def offline_infer( self, feats: np.ndarray, feats_len: np.ndarray ) -> Tuple[np.ndarray, np.ndarray]: outputs = self.ort_infer([feats.astype("int32"), feats_len]) return outputs def online_infer( self, feats: np.ndarray, feats_len: np.ndarray, vad_mask: np.ndarray, sub_masks: np.ndarray, ) -> Tuple[np.ndarray, np.ndarray]: outputs = self.ort_infer( [feats.astype("int32"), feats_len, vad_mask, sub_masks] ) return outputs def online(self, text: str, param_dict: map, split_size=20): cache_key = "cache" assert cache_key in param_dict cache = param_dict[cache_key] if cache is not None and len(cache) > 0: precache = "".join(cache) else: precache = "" cache = [] full_text = precache + text split_text = code_mix_split_words(full_text) split_text_id = self.converter.tokens2ids(split_text) mini_sentences = split_to_mini_sentence(split_text, split_size) mini_sentences_id = split_to_mini_sentence(split_text_id, split_size) new_mini_sentence_punc = [] assert len(mini_sentences) == len(mini_sentences_id) cache_sent = [] cache_sent_id = np.array([], dtype="int32") sentence_punc_list = [] sentence_words_list = [] cache_pop_trigger_limit = 200 skip_num = 0 for mini_sentence_i in range(len(mini_sentences)): mini_sentence = mini_sentences[mini_sentence_i] mini_sentence_id = mini_sentences_id[mini_sentence_i] mini_sentence = cache_sent + mini_sentence mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0) text_length = len(mini_sentence_id) data = { "input": np.array(mini_sentence_id[None, :], dtype="int64"), "text_lengths": np.array([text_length], dtype="int32"), "vad_mask": self.vad_mask(text_length, len(cache))[ None, None, :, : ].astype(np.float32), "sub_masks": np.tril( np.ones((text_length, text_length), dtype=np.float32) )[None, None, :, :].astype(np.float32), } try: outputs = self.online_infer( data["input"], data["text_lengths"], data["vad_mask"], data["sub_masks"], ) y = outputs[0] punctuations = np.argmax(y, axis=-1)[0] assert punctuations.size == len(mini_sentence) except ONNXRuntimeError as e: logging.exception(e) # Search for the last Period/QuestionMark as cache if mini_sentence_i < len(mini_sentences) - 1: sentenceEnd = -1 last_comma_index = -1 for i in range(len(punctuations) - 2, 1, -1): if ( self.punc_list[punctuations[i]] == "。" or self.punc_list[punctuations[i]] == "?" ): sentenceEnd = i break if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",": last_comma_index = i if ( sentenceEnd < 0 and len(mini_sentence) > cache_pop_trigger_limit and last_comma_index >= 0 ): # The sentence it too long, cut off at a comma. sentenceEnd = last_comma_index punctuations[sentenceEnd] = self.period cache_sent = mini_sentence[sentenceEnd + 1 :] cache_sent_id = mini_sentence_id[sentenceEnd + 1 :] mini_sentence = mini_sentence[0 : sentenceEnd + 1] punctuations = punctuations[0 : sentenceEnd + 1] punctuations_np = [int(x) for x in punctuations] new_mini_sentence_punc += punctuations_np sentence_punc_list += [self.punc_list[int(x)] for x in punctuations_np] sentence_words_list += mini_sentence assert len(sentence_punc_list) == len(sentence_words_list) words_with_punc = [] sentence_punc_list_out = [] for i in range(0, len(sentence_words_list)): if i > 0: if ( len(sentence_words_list[i][0].encode()) == 1 and len(sentence_words_list[i - 1][-1].encode()) == 1 ): sentence_words_list[i] = " " + sentence_words_list[i] if skip_num < len(cache): skip_num += 1 else: words_with_punc.append(sentence_words_list[i]) if skip_num >= len(cache): sentence_punc_list_out.append(sentence_punc_list[i]) if sentence_punc_list[i] != "_": words_with_punc.append(sentence_punc_list[i]) sentence_out = "".join(words_with_punc) sentenceEnd = -1 for i in range(len(sentence_punc_list) - 2, 1, -1): if sentence_punc_list[i] == "。" or sentence_punc_list[i] == "?": sentenceEnd = i break cache_out = sentence_words_list[sentenceEnd + 1 :] if len(sentence_out) > 0 and sentence_out[-1] in self.punc_list: sentence_out = sentence_out[:-1] sentence_punc_list_out[-1] = "_" param_dict[cache_key] = cache_out return sentence_out, sentence_punc_list_out, cache_out def vad_mask(self, size, vad_pos, dtype=np.bool_): """Create mask for decoder self-attention. :param int size: size of mask :param int vad_pos: index of vad index :param torch.dtype dtype: result dtype :rtype: torch.Tensor (B, Lmax, Lmax) """ ret = np.ones((size, size), dtype=dtype) if vad_pos <= 0 or vad_pos >= size: return ret sub_corner = np.zeros((vad_pos - 1, size - vad_pos), dtype=dtype) ret[0 : vad_pos - 1, vad_pos:] = sub_corner return ret